Prime element

In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept that is the same in UFDs but not the same in general.

Definition

An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b. With this definition, Euclid's lemma is the assertion that prime numbers are prime elements in the ring of integers. Equivalently, an element p is prime if, and only if, the principal ideal (p) generated by p is a nonzero prime ideal.[1] (Note that in an integral domain, the ideal (0) is a prime ideal, but 0 is an exception in the definition of 'prime element'.)

Interest in prime elements comes from the fundamental theorem of arithmetic, which asserts that each nonzero integer can be written in essentially only one way as 1 or −1 multiplied by a product of positive prime numbers. This led to the study of unique factorization domains, which generalize what was just illustrated in the integers.

Being prime is relative to which ring an element is considered to be in; for example, 2 is a prime element in Z but it is not in Z[i], the ring of Gaussian integers, since 2 = (1 + i)(1 − i) and 2 does not divide any factor on the right.

Connection with prime ideals

An ideal I in the ring R (with unity) is prime if the factor ring R/I is an integral domain.

In an integral domain, a nonzero principal ideal is prime if and only if it is generated by a prime element.

Irreducible elements

Prime elements should not be confused with irreducible elements. In an integral domain, every prime is irreducible[2] but the converse is not true in general. However, in unique factorization domains,[3] or more generally in GCD domains, primes and irreducibles are the same.

Examples

The following are examples of prime elements in rings:

  • The integers ±2, ±3, ±5, ±7, ±11, ... in the ring of integers Z
  • the complex numbers (1 + i), 19, and (2 + 3i) in the ring of Gaussian integers Z[i]
  • the polynomials x2 − 2 and x2 + 1 in Z[x], the ring of polynomials over Z.
  • 2 in the quotient ring Z/6Z
  • x2 + (x2 + x) is prime but not irreducible in the ring Q[x]/(x2 + x)
  • In the ring Z2 of pairs of integers, (1, 0) is prime but not irreducible (one has (1, 0)2 = (1, 0)).
  • In the ring of algebraic integers the element 3 is irreducible but not prime (as 3 divides and 3 does not divide any factor on the right).

References

Notes
  1. ^ Hungerford 1980, Theorem III.3.4(i), as indicated in the remark below the theorem and the proof, the result holds in full generality.
  2. ^ Hungerford 1980, Theorem III.3.4(iii)
  3. ^ Hungerford 1980, Remark after Definition III.3.5
Sources
  • Section III.3 of Hungerford, Thomas W. (1980), Algebra, Graduate Texts in Mathematics, vol. 73 (Reprint of 1974 ed.), New York: Springer-Verlag, ISBN 978-0-387-90518-1, MR 0600654
  • Jacobson, Nathan (1989), Basic algebra. II (2 ed.), New York: W. H. Freeman and Company, pp. xviii+686, ISBN 0-7167-1933-9, MR 1009787
  • Kaplansky, Irving (1970), Commutative rings, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, MR 0254021

Read other articles:

Airbus SASJenisAnak perusahaanIndustriDirgantaraDidirikan18 Desember 1969 (Airbus Industrie) 2001 (Airbus SAS)PendiriBernard Lathière, Roger Béteille, Henri ZieglerKantorpusatBlagnac, PrancisWilayah operasiSeluruh duniaTokohkunciThomas Enders, Chief Executive Officer Bernard Lathière John Leahy, Chief Commercial Officer Fabrice Brégier, COOProdukPesawat terbang komersialPendapatan €27.45 billion (FY 2008)Laba bersih €1.597 billion (FY 2008)Karyawan52,000IndukEADSAnakusahaAir...

 

Sections of the Way of St. James in France part of the World Heritage Site in France Routes of Santiago de Compostela in France Routes de St-Jacques de Compostelle en FranceUNESCO World Heritage SiteLocationFranceIncludes71 structures (churches, abbeys, etc) and 7 stretches of roadCriteriaCultural: (ii), (iv), (vi)Reference868Inscription1998 (22nd Session)Area97.21 ha (240.2 acres)Coordinates45°11′2.6″N 0°43′22.6″W / 45.184056°N 0.722944°W / 45.18...

 

Агнешка Котлярскаяпольск. Agnieszka Kotlarska Дата рождения 15 августа 1972(1972-08-15) Место рождения Вроцлав, Польша Дата смерти 27 августа 1996(1996-08-27) (24 года) Место смерти Вроцлав, Польша Гражданство  Польша Супруг Ярослав Свентек Внешний вид Рост 176 см Цвет волос брюнетка  Медиаф�...

この記事は英語版の対応するページを翻訳することにより充実させることができます。(2022年2月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしな

 

EK veldrijden 2012 Datum 3 november 2012 Plaats Vlag van Verenigd Koninkrijk Ipswich Editie 10 Organisator UEC Evenementen 3 Kampioenen Vrouwen elite Vlag van Verenigd Koninkrijk Helen Wyman Mannen beloften Mike Teunissen Jongens junioren Mathieu van der Poel Navigatie ← EK 2011     EK 2013 → Veldrijden Portaal    Wielersport EK veldrijden 2012ElitevrouwenBeloftenmannenJuniorenjongens De Europese kampioenschappen veldrijden 2012 was de tiende editie van de Europese kam...

 

Untuk Keuskupan, lihat Daftar keuskupan di Indonesia. Berikut adalah daftar paroki di Indonesia yang dikelompokkan berdasarkan wilayah Keuskupan. Daftar ini diolah dari beberapa sumber. A.Medan Padang Sibolga A.Palembang Pangkal Pinang Tanjungkarang Bogor A.Jakarta Bandung A.Semarang Malang Purwokerto Surabaya A.Pontianak Palangkaraya A.Samarinda Ketapang Sanggau Sintang Tanjung Selor Banjarmasin Manado A.Makassar Denpasar A.Ende Larantuka Maumere Ruteng A.Kupang Atambua Weetebula Amboina A.M...

Upper house of the Vermont General Assembly Vermont State SenateVermont General AssemblyTypeTypeUpper house Term limitsNoneHistoryNew session startedJanuary 4, 2023LeadershipPresidentDavid Zuckerman (P) since January 5, 2023 President pro temporePhilip Baruth (D) since January 4, 2023 Majority LeaderAlison Clarkson (D) since January 6, 2021 Minority LeaderRandy Brock (R) since January 6, 2021 StructureSeats30Political groupsMajority (23)   Democratic (22)   Progressiv...

 

Bueng Kan บึงกาฬProvinsiPhu Tok LambangLokasi Provinsi Bueng Kan di ThailandNegara ThailandIbu kotaBueng KanLuas • Total4,305 km2 (1,662 sq mi)Populasi (2014) • Total418.566[1] • Peringkat63Zona waktuUTC+7 (Zona waktu Thailand)Kode ISO 3166TH-38[2] Bueng Kan (bahasa Thai: บึงกาฬ), juga dieja sebagai Bung Kan,[3] adalah provinsi (changwat) ke-76 Thailand, berdiri secara resmi pada t...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ديك كينيدي معلومات شخصية تاريخ الميلاد 12 سبتمبر 1925  تاريخ الوفاة 25 سبتمبر 1996 (71 سنة)   مواطنة أستراليا  الحياة العملية المهنة لاعب كرة قدم أسترالية &...

Jamaican Grammy Award-winning musician Paul DouglasBackground informationBorn1950 (age 72–73)Saint Ann Parish, JamaicaGenresReggae, jazzOccupation(s)Drummer, percussionistInstrument(s)DrumsYears active1965–presentMusical artist Earl “Paul” Douglas (born c. 1950) is a Jamaican Grammy Award-winning[1] drummer and percussionist, best known for his work as the drummer, percussionist and bandleader of Toots and the Maytals. His career spans more than five decades as one of...

 

2009 filmBaanamMovie PosterDirected byChaitanya DantuluriWritten byChaitanya DantuluriNagaraju GandhamProduced byPriyanka DuttStarringNara RohitVedhikaSayaji ShindeRajeev KanakalaCinematographyAnil BhandariEdited byMarthand K. VenkateshMusic byMani SharmaDistributed byThree Angels Studio Pvt LtdRelease date 16 September 2009 (2009-09-16) Running time110 minutesCountryIndiaLanguageTeluguBudgetunknown Baanam (transl. Arrow) is a 2009 Indian Telugu-language action drama film...

 

Los Angeles Metro Rail station Not to be confused with Pacific Coast Highway station (J Line) or Coast Highway station. This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Pacific Coast Highway station A Line – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Pacific Coast Hwy Train at P...

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (May 2015) Human settlement in ScotlandLesmahagowScottish Gaelic: Lios MoChudaScots: Lismahagie or The GowLesmahagowLocation within South LanarkshirePopulation4,300 (mid-2020 est.)[1]OS grid referenceNS8139• Edinburgh35.8 miles (57.6 km)• London324 miles ...

 

1984 novel by Keri Hulme The Bone People First edition coverAuthorKeri HulmeCover artistCover design by Basia Smolnicki, cover illustration by Keri HulmeCountryNew ZealandLanguageEnglishPublisherSpiralPublication dateFebruary 1984Media typePrint (hardback & paperback)Pages450 pp (paperback edition)ISBN0-9597593-2-8 (first edition)OCLC36312027 The Bone People, styled by the writer and in some editions as the bone people,[1][2] is a 1984 novel by New Zealand writer...

 

Opposition of a circuit to a current when a voltage is applied Articles aboutElectromagnetism Electricity Magnetism Optics History Textbooks Electrostatics Electric charge Coulomb's law Conductor Charge density Permittivity Electric dipole moment Electric field Electric potential Electric flux / potential energy Electrostatic discharge Gauss's law Induction Insulator Polarization density Static electricity Triboelectricity Magnetostatics Ampère's law Biot–Savart law Gauss's law fo...

American country musician (1899–1982) DeFord BaileyBailey in the 1970sBackground informationBorn(1899-12-14)December 14, 1899Smith County, Tennessee, U.S.DiedJuly 2, 1982(1982-07-02) (aged 82)Nashville, Tennessee, U.S.[1]Genres Country blues Instrument(s) Harmonica guitar[2] banjo[3] Years active1920s–1941Labels Victor Bluebird RCA Musical artist DeFord Bailey (December 14, 1899 – July 2, 1982)[4] was an American country music and blues star from the...

 

Georgios Tzavellas Tzavellas bersama Yunani pada 2010Informasi pribadiNama lengkap Georgios Tzavellas [1]Tanggal lahir 26 November 1987 (umur 36)Tempat lahir Athena, YunaniTinggi 6 ft 0 in (1,83 m)Posisi bermain Bek kiri / Bek tengahInformasi klubKlub saat ini AEK AthenaNomor 31Karier junior1992–2006 Doxa VyronasKarier senior*Tahun Tim Tampil (Gol)2006–2008 Kerkyra 23 (2)2008–2010 Panionios 45 (2)2010–2012 Eintracht Frankfurt 27 (1)2012–2013 Monaco 38 (3...

 

Tradisi Parebut Sééng Bogor Budaya Sunda adalah budaya yang tumbuh dan hidup dalam masyarakat Sunda. Budaya Sunda dikenal dengan budaya yang sangat menjunjung tinggi sopan santun. Pada umumnya karakter masyarakat Sunda adalah periang, ramah-tamah (soméah, seperti dalam falsafah soméah hadé ka sémah), murah senyum, lemah-lembut, dan sangat menghormati orang tua. Itulah cermin budaya masyarakat Sunda. Budaya Sunda Etos budaya Kebudayaan Sunda termasuk salah satu kebudayaan tertua di Nusan...

Kenji UematsuBizitzaJaiotzaSanturtzi, 1976ko urriaren 28a (47 urte)Herrialdea Bizkaia, Euskal HerriaFamiliaAnai-arrebak ikusi Kiyoshi Uematsu HezkuntzaHizkuntzakgaztelaniaJarduerakJarduerakjudoka Parte-hartzailea 2004ko Udako Olinpiar Jokoak Pisua60 kilogramoAltuera1,57 metro Kenji Uematsu Trebiño (Portugalete, 1976ko urriaren 28a -) euskal kirolaria da, judotan aritzen dena. 1,58 metroko altuera eta 60 kg. pisua ditu. Biografia Kiyoshi Uematsu anaia txikiak judotan ere aritze...

 

Python brongersmaiPhân loại khoa họcGiới (regnum)AnimaliaNgành (phylum)ChordataLớp (class)ReptiliaBộ (ordo)SquamataPhân bộ (subordo)SerpentesPhân thứ bộ (infraordo)AlethinophidiaHọ (familia)PythonidaeChi (genus)PythonLoài (species)P. brongersmaiDanh pháp hai phầnPython brongersmaiStull, 1938 Danh pháp đồng nghĩa Danh sách Python curtus brongersmai Stull, 1938 Python curtus brongersmai — Cox et al., 1998 Python curtus brongersmai — Chan-ard et al., 1999 Pyth...