Perpetual check

In the game of chess, perpetual check is a situation in which one player can play an unending series of checks, from which the defending player cannot escape. This typically arises when the player who is checking feels their position in the game is inferior, they cannot deliver checkmate, and wish to force a draw.

A draw by perpetual check is no longer one of the rules of chess, but will eventually allow a draw claim by either threefold repetition or the fifty-move rule. Players usually agree to a draw long before that.[1]

Perpetual check can also occur in other forms of chess, although the rules relating to it might be different. For example, giving perpetual check is not allowed in shogi and xiangqi, where doing so leads to an automatic loss for the giver.

Examples

Example from Reinfeld
abcdefgh
8
g8 black king
g7 black pawn
g5 white king
h5 white queen
b4 black rook
a3 black queen
d3 black bishop
8
77
66
55
44
33
22
11
abcdefgh
White to move draws by perpetual check, starting with 1.Qe8+.

In this diagram, Black is ahead a rook, a bishop, and a pawn, which would normally be a decisive material advantage. But White, to move, can draw by perpetual check:

1. Qe8+ Kh7
2. Qh5+ Kg8
3. Qe8+ etc.[2]

The same position will soon repeat for the third time and White can claim a draw by threefold repetition; or the players will agree to a draw.

Unzicker versus Averbakh

Unzicker vs. Averbakh, 1952
abcdefgh
8
f8 black rook
g8 black king
b7 black rook
c7 white pawn
g7 black pawn
h7 black pawn
a6 black pawn
f6 black knight
d5 white pawn
e5 black pawn
b4 white pawn
e4 white pawn
f4 black queen
c3 white queen
h3 white pawn
a2 white pawn
g2 white pawn
a1 white rook
e1 white rook
g1 white king
8
77
66
55
44
33
22
11
abcdefgh
Perpetual check extricates Black from his difficulties.

In the diagram, from Wolfgang UnzickerYuri Averbakh, Stockholm Interzonal 1952,[3] Black (on move) would soon be forced to give up one of his rooks for White's c-pawn (to prevent it from promoting or to capture the promoted queen after promotion). He can, however, exploit the weakness of White's kingside pawn structure with

27... Rxc7!
28. Qxc7 Ng4!

Threatening 29...Qh2#. If 29.hxg4 then 29...Qf2+, salvaging a draw by threefold repetition with checks by moving the queen alternatively to f2 and h4.

Hamppe versus Meitner

Hamppe vs. Meitner, 1872
abcdefgh
8
a8 black rook
c8 black bishop
d8 black king
h8 black rook
c7 black pawn
f7 black pawn
g7 black pawn
h7 black pawn
b6 black pawn
c6 white king
a5 black pawn
d5 black pawn
e5 black pawn
a3 white pawn
b2 white pawn
c2 white pawn
d2 white pawn
g2 white pawn
h2 white pawn
a1 white rook
c1 white bishop
d1 white queen
g1 white knight
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
Down massive amounts of material, Black forces a draw by perpetual check.

In a classic game Carl HamppePhilipp Meitner, Vienna 1872,[4] following a series of sacrifices Black forced the game to the position in the diagram, where he drew by a perpetual check:

16... Bb7+!
17. Kb5

If 17.Kxb7?? Kd7 18.Qg4+ Kd6 followed by ...Rhb8#.

17... Ba6+
18. Kc6

If 18.Ka4?, 18...Bc4 and 19...b5#.

18... Bb7+ ½–½

Leko versus Kramnik

Leko vs. Kramnik, 2008
abcdefgh
8
a8 black rook
h8 black king
a7 black pawn
b7 black pawn
g7 black pawn
h7 black pawn
c6 black pawn
f5 white queen
h4 white pawn
c3 black queen
c2 white pawn
f2 white pawn
g2 white pawn
b1 white king
d1 white rook
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
Position after 24.Qxf5

In the game Peter LekoVladimir Kramnik, Corus 2008, Black was able to obtain a draw because of perpetual check:[5]

24... Qb4+
25. Ka2 Qa4+
26. Kb2 Qb4+
27. Kc1 Qa3+
28. Kb1 ½–½

If 28.Kd2? Rd8+ 29.Ke2 Qe7+.

Fischer versus Tal

Fischer vs. Tal, 1960
abcdefgh
8
c8 black king
a7 black pawn
b7 black pawn
e7 black knight
h7 white queen
e6 black queen
a5 white pawn
d5 black pawn
a3 white pawn
c3 black pawn
c2 white pawn
f2 white pawn
g2 white king
h2 white pawn
f1 white rook
8
77
66
55
44
33
22
11
abcdefgh
Position after 21.Kxg2

A perpetual check saved a draw for Mikhail Tal in the game Bobby Fischer–Tal, Leipzig 1960,[6] played in the 14th Chess Olympiad, while Tal was World Champion. In this position Black played

 21... Qg4+

and the game was drawn.[7] (After 22.Kh1, then 22...Qf3+ 23.Kg1 Qg4+ forces perpetual check.)

Mutual perpetual check

abcdefgh
8
d6 black rook
e6 black rook
e5 black king
d3 white king
c1 white upside-down knight
f1 white upside-down knight
8
77
66
55
44
33
22
11
abcdefgh
Mutual discovered perpetual check with nightriders

A mutual perpetual check is not possible using only the orthodox chess pieces, but it is possible using some fairy chess pieces. In the diagram to the right, the pieces represented as upside-down knights are nightriders: they move any number of knight-moves in a given direction until they are blocked by something along the path (that is, a nightrider is to a knight as a queen is to a king, ignoring the rules on check). There could follow:

1. Ke3+ Kd5+
2. Kd3+ Ke5+
3. Ke3+ Kd5+

and so on. This is in fact a mutual perpetual discovered check.[9]

Noam Elkies, 1999
abcdefgh
8
b6 black king
a5 black rook
e5 white king
d4 white knight
b2 black upside-down knight
a1 black bishop
b1 white rook
g1 white bishop
8
77
66
55
44
33
22
11
abcdefgh
Mutual discovered perpetual check with a camel

Noam Elkies devised a mutual discovered perpetual check position that requires only one fairy piece in 1999. The piece represented by an inverted knight here is a camel, a (1,3)-leaper. There could follow:

1. Nb5+ Cc5+
2. Nd4+ Cb2+
3. Nb5+ Cc5+

and so on.[10]

Perpetual pursuit

S. Birnov, 1928
abcdefgh
8
g8 black bishop
c7 white king
a5 white pawn
c5 black pawn
f5 black king
c4 white pawn
h4 black pawn
c3 white pawn
e3 white pawn
8
77
66
55
44
33
22
11
abcdefgh
White to play and draw

Related to perpetual check is the perpetual pursuit, which differs in that the continually attacked piece is not the king. The result is similar, in that the opposing side's attack stalls because of the need to respond to the continuous threats.[11]

In the study to the right, White's situation seems hopeless: they are down a piece and cannot stop Black's h-pawn, and their passed a-pawn can easily be stopped by Black's bishop. However, they can save themself by restricting the bishop's movement to set up a perpetual pursuit. They begin:

1. a6 Bxc4

A direct pawn race with 1...h3? fails, as White promotes first and covers the promotion square.

2. e4+!

This pawn sacrifice forces Black to limit their bishop's scope along the long diagonal.

2... Kxe4

Forced, as Black has to play ...Bd5 to stop the pawn.

3. a7 Bd5
4. c4!

Denying another square to the bishop, which must stay on the a8–h1 diagonal. This forces

4... Ba8

And White can then begin the perpetual pursuit:

5. Kb8 Bc6
6. Kc7 Ba8

Black can make no progress.

Bilek vs. Schüssler, 1978
abcdefgh
8
a8 black rook
b8 black knight
d8 black queen
e8 black king
f8 black bishop
h8 black rook
a7 black pawn
e7 black knight
f7 black pawn
g7 black pawn
h7 black pawn
b6 black pawn
c6 black pawn
d5 white knight
c4 white bishop
f3 white pawn
g3 white pawn
a2 white pawn
b2 white pawn
f2 white pawn
h2 white pawn
a1 white rook
c1 white bishop
d1 white queen
e1 white king
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
White attempts to win the enemy queen...
abcdefgh
8
a8 black rook
b8 black knight
d8 white queen
f8 black bishop
h8 black rook
a7 black pawn
f7 black king
h7 black pawn
b6 black pawn
c6 black pawn
f6 black pawn
d5 black knight
f3 white pawn
g3 white pawn
a2 white pawn
b2 white pawn
f2 white pawn
h2 white pawn
a1 white rook
c1 white bishop
e1 white king
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
...but traps his own into a perpetual pursuit.

An example of perpetual pursuit being used in a game occurred in István BilekHarry Schüssler, Poutiainen Memorial 1978. Bilek thought he could win the enemy queen with the combination

10. Nf6+ gxf6
11. Bxf7+ Kxf7
12. Qxd8

However, Schüssler replied

12... Nd5! ½–½

and Bilek conceded the draw. His queen is now trapped, and with ...Bb4+ threatening to win it, he has nothing better than 13.0-0 Bg7 14.Qd6 Bf8 15.Qd8 Bg7 with another perpetual pursuit.

History

N.N. vs. Unknown, 1750
abcdefgh
8
a8 black rook
c8 black bishop
a7 black pawn
b7 black pawn
c7 black pawn
f7 white bishop
g7 black pawn
h7 black king
d6 black pawn
g6 white knight
h6 black pawn
e5 black pawn
e4 white pawn
h4 black queen
d3 white pawn
f3 black knight
h3 white pawn
a2 white pawn
b2 white pawn
c2 white pawn
f2 black bishop
g2 white pawn
a1 white rook
c1 white bishop
h1 white king
8
77
66
55
44
33
22
11
abcdefgh
Final position after 15...Kh7

The Oxford Encyclopedia of Chess Games, Volume 1 (1485–1866) includes all recorded games played up to 1800.[12] The earliest example of perpetual check contained in it is a game played by two unknown players in 1750:

N.N. versus Unknown, 1750
1. e4 e5 2. Nf3 Nc6 3. Bc4 Bc5 4. 0-0 (the rules of castling not yet having been standardized in their current form, White moved his king to h1 and his rook to f1) 4... Nf6 5. Nc3 Ng4 6. d3 0-0 (Black moved his king to h8 and his rook to f8) 7. Ng5 d6 8. h3 h6 9. Nxf7+ Rxf7 10. Bxf7 Qh4 11. Qf3 Nxf2+ 12. Rxf2 Bxf2 13. Nd5 Nd4 14. Ne7 Nxf3 15. Ng6+ Kh7 ½–½ in light of 16.Nf8+ Kh8 17.Ng6+ etc.[13]

The next examples of perpetual check in the book are two games, both ending in perpetual check, played in 1788 between Bowdler and Philidor, with Philidor giving odds of pawn and move.[14]

A draw by perpetual check used to be in the rules of chess.[15][16] Howard Staunton gave it as one of six ways to draw a game in The Chess-Player's Handbook.[17] It has since been removed because perpetual check will eventually allow a draw claim by either threefold repetition or the fifty-move rule. If a player demonstrates intent to perform perpetual check, the players usually agree to a draw.[18]

See also

References

  1. ^ (Burgess 2000:478)
  2. ^ (Reinfeld 1958:42–43)
  3. ^ "Unzicker vs. Averbakh, Stockholm 1952". Chessgames.com.
  4. ^ "Hamppe vs. Meitner, Vienna 1872". Chessgames.com.
  5. ^ "Leko vs. Kramnik, Wijk aan Zee 2008". Chessgames.com.
  6. ^ "Fischer vs. Tal, Leipzig 1960". Chessgames.com.
  7. ^ (Evans 1970:53)
  8. ^ Die Schwalbe
  9. ^ Tim Krabbé, Open chess diary – see item 120
  10. ^ Tim Krabbé, Open chess diary – see item 125
  11. ^ Seirawan, Yasser; Silman, Jeremy (2003). Winning Chess Tactics. London: Everyman Chess. pp. 119–121. ISBN 1857443330.
  12. ^ (Levy & O'Connell 1981:ix)
  13. ^ (Levy & O'Connell 1981:9)
  14. ^ (Levy & O'Connell 1981:12)
  15. ^ (Reinfeld 1954:175)
  16. ^ (Reinfeld 1958:41–43)
  17. ^ (Staunton 1847:21)
  18. ^ (Hooper & Whyld 1992)

Bibliography

Read other articles:

У этого топонима есть и другие значения, см. Лисенки. ДеревняЛисенки 54°45′58″ с. ш. 36°15′14″ в. д.HGЯO Страна  Россия Субъект Федерации Калужская область Муниципальный район Малоярославецкий Сельское поселение «Посёлок Юбилейный» История и география Высота цент

 

Lee Ji-hoonLahir27 Maret 1979 (umur 44)Seoul, Korea SelatanNama lainLee Jee HoonYi Ji-HoonPekerjaanAktor, penyanyiTahun aktif1996–sekarangNama KoreaHangul이지훈 Hanja李智勲 Alih AksaraI Ji-hunMcCune–ReischauerYi Chi-hun Situs webhttp://www.leejeehoon.co.kr (Korea) http://www.leejeehoon.jp/ (Jepang) Lee Ji-hoon (Hangul: 이지훈; lahir 27 Maret 1979)[1] adalah aktor dan penyanyi asal Korea Selatan. Ia juga dikenal sebagai pangeran K-pop. Filmografi Fi...

 

Stasiun Blitar PD27 Pintu masuk Stasiun Blitar, 2019LokasiJalan Mastrip 75Kepanjenkidul, Kepanjenkidul, Blitar, Jawa Timur 66111IndonesiaKoordinat8°06′05″S 112°09′46″E / 8.1012675°S 112.1627659°E / -8.1012675; 112.1627659Koordinat: 8°06′05″S 112°09′46″E / 8.1012675°S 112.1627659°E / -8.1012675; 112.1627659Ketinggian+167 mOperatorKereta Api IndonesiaDaerah Operasi VII Madiun KAI CommuterKAI LogistikLetak dari pangkalkm 122...

A karaAksara BaliHuruf LatinAIASTAFonem[a], [ə][1]UnicodeU+1B05 , U+Warga aksarakanthya A atau A kara adalah salah satu aksara swara (huruf vokal) dalam sistem penulisan aksara Bali. Aksara ini melambangkan bunyi /a/, sama halnya seperti aksara अ (A) dalam aksara Dewanagari, huruf A dalam alfabet Latin, atau huruf alfa (α) dalam alfabet Yunani. Bentuk Huruf A dalam aksara Brahmi telah menurunkan aksara Grantha, Pallawa dan bentuknya telah mengalami perubahan. A kara dalam aksara B...

 

City of Monash Local Government Area van Australië Locatie van Monash City in Melbourne Situering Staat Victoria Hoofdplaats Glen Waverley Coördinaten 37°53'0ZB, 145°10'0OL Algemene informatie Oppervlakte 82 km² Inwoners 162.838 (juni 2006) Stadsdelen 13 Overig Wards 4 Portaal    Australië Monash City is een Local Government Area (LGA) in Australië in de staat Victoria. Monash City telt 162.838 inwoners. De hoofdplaats is Glen Waverley.

 

Juice from palm Kernel after boiling and pounding Palm fruit juice or Tal er Rosh, (Bengali: তালের রস) is sweet sap extracted from the fruit of palm trees in summer. It contains vitamins A, B, C, and the elements zinc, calcium, potassium, and iron. It also contains antioxidants.[1] This is a symbolic and well-known food in Bengal in the summer. Numbers of popular Bengali foods are made using this palm fruit juice such as palm candy, pitha, pays, kheer, and taller boora (...

Governmental wealth redistribution Transfer payments to (persons) as a percent of federal revenue in the United States Transfer payments to (persons + business) in the United States In macroeconomics and finance, a transfer payment (also called a government transfer or simply fiscal transfer) is a redistribution of income and wealth by means of the government making a payment, without goods or services being received in return. These payments are considered to be non-exhaustive because they d...

 

Raymond Henry NorwebRaymond Henry Norweb (right) and his wife Emery May Norweb in 1923United States Ambassador to PeruIn officeJanuary 12, 1940 – September 30, 1943Preceded byLaurence A. SteinhardtSucceeded byJohn Campbell WhiteUnited States Ambassador to PortugalIn officeDecember 3, 1943 – February 15, 1945Preceded byBert FishSucceeded byHerman B. BaruchUnited States Ambassador to CubaIn officeJuly 24, 1945 – May 22, 1948Preceded bySpruille BradenSucceeded by...

 

American politician and lawyer (1864–1917) Alonzo L. MilesMiles in 1912 publicationMember of the Maryland House of DelegatesIn office1892, 1898 Personal detailsBorn(1864-02-03)February 3, 1864Somerset County, Maryland, U.S.DiedNovember 3, 1917(1917-11-03) (aged 53)Salisbury, Maryland, U.S.Resting placeCambridge, Maryland, U.S.Political partyDemocraticSpouse Agnes Hooper ​(m. 1891)​Children4, including Hooper S.RelativesJoshua Weldon Miles (brother)Alma mate...

第1回イスラエル議会総選挙הבחירות הכלליות לכנסת ה -1 1949年1月25日 → 1951年 内閣 ベン=グリオン内閣 改選数 120 選挙制度 厳正拘束名簿式比例代表制 有権者 満21歳以上のイスラエル国民 有権者数 506,567 選挙後の党派別勢力図 投票率 86.87%   第1党 第2党   党首 ダヴィド・ベン=グリオン メイル・ヤアリ 政党 マパイ マパム 党首就任 1930年1月 1948年1月 ...

 

Orogeni mengacu pada gaya dan peristiwa yang mengarah ke deformasi struktural besar litosfer Bumi (kerak dan mantel teratas) karena interaksi antara lempeng-lempeng tektonik. Sabuk orogenik terbentuk ketika lempeng benua menyusut dan didorong ke atas untuk membentuk jajaran pegunungan, dan melibatkan sejumlah besar proses geologi yang secara kolektif disebut orogenesis.[1][2] Kata orogeni berasal dari bahasa Yunani yang (oros untuk gunung ditambah genesis untuk penciptaan atau...

 

Palace in Kathmandu, Nepal This article is about the palace. For the TV series, see Singha Durbar (TV series). Lion Palace redirects here. For other uses, see Palace of the Lions. This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and ...

La economía de California es la fuerza dominante en la economía de los Estados Unidos, con California pagando más al sistema federal de lo que recibe en beneficios monetarios directos.[1]​ Regiones económicas California es también el hogar de varias regiones económicas importantes, tales como Hollywood (entretenimiento), el Valle Central de California (agricultura), Tech Coast y Silicon Valley (computadoras y alta tecnología) y regiones productoras de vinos como el Valle de Napa,...

 

2011 studio album by Jake ShimabukuroPeace Love UkuleleStudio album by Jake ShimabukuroReleasedJanuary 4, 2011LabelHitchhike RecordsJake Shimabukuro chronology Live(2009) Peace Love Ukulele(2011) Grand Ukulele(2012) Peace Love Ukulele is Jake Shimabukuro's 2011 solo album. It was released in January 2011, and reached #1 in Billboard's Top World Music Albums in 2011 and 2012.[1] In Hawaii, Peace Love Ukulele won the 2012 Na Hoku Hanohano Award for Instrumental Album of the Year...

 

I Liceum Ogólnokształcące im. Stefana Żeromskiego w Ełku Schulform High School Gründung 1905 / 1945 Adresse Piłsudskiego Straße 3 Ort Ełk Woiwodschaft Ermland-Masuren Staat Polen Träger Stadt Ełk Leitung Robert Hoffmann Website lo1elk.pl Das I Allgemeinbildende Stefan Żeromski – Lyzeum in Ełk (polnisch I Liceum Ogólnokształcące im. Stefana Żeromskiego w Ełku) ist eine allgemeinbildende Schule. Sie wurde am 1. September 1945 als staatliche koedukative Mittelstufenschule geg...

1979 science fiction novel by Hugh Walters The Dark Triangle Cover art of the first editionAuthorHugh WaltersCountryUnited KingdomLanguageEnglishSeriesChris Godfrey of U.N.E.X.AGenreScience fiction novelPublisherFaberPublication date1979Pages125ISBN0571115845OCLC8882523Preceded byThe Blue Aura Followed byThe Glass Men (unpublished)  The Dark Triangle is a juvenile science fiction novel, the twentieth and last published in Hugh Walters' Chris Godfrey of U.N.E.X.A. series. I...

 

Para el sitio de Ruan de 1562 durante las Guerras Francesas de Religión, véase Sitio de Ruan (1562). Sitio de Ruan Parte de Guerra de los cien años El sitio de Ruan en 1419 (ilustración de Vigiles de Charles VII)Fecha 31 de julio de 1418 – 19 de enero de 1419Lugar Ruan, FranceCoordenadas 49°26′35″N 1°06′09″E / 49.443055555556, 1.1025Resultado Victoria inglesaBeligerantes Inglaterra Reino de Francia Comandantes Rey Enrique V Alain Blanchard Guy Le Bouteiller &#...

 

吴志铭(1958年—)籍贯不详,中国人民解放军中将。曾任胡锦涛时期中央军委主席办公室主任。 生平 吴志铭是北京大学哲学系80级校友。后为中共中央党校哲学专业硕士研究生[1]。此后曾在胡锦涛时期任中央军委主席办公室秘书[2]。2007年底,吴志铭任中央军委办公厅副主任[3]。2013年,任中国人民解放军军事科学院副政治委员[4]。 2014年7月,晋升中...

Hindu temple in Gadhada, India Swaminarayan Mandir, GadhadaThe temple at GadhadaReligionAffiliationHinduismDeityRadha KrishnaFestivalsJanmashtami, Radhastami, Holi, DiwaliLocationLocationGadhadaStateGujaratCountryIndiaArchitectureCreatorSwaminarayanCompleted9 October 1828Websitewww.shrigopinathji.com Swaminarayan Mandir, Gadhada (Devnagari: श्री स्वामिनारायण मन्दिर, गढडा), also known as Gopinathji Dev mandir, is a Hindu temple in Gadhada, Gu...

 

Disambiguazione – Se stai cercando il comune greco, vedi Nestorio (Grecia). NestorioArcivescovo di CostantinopoliElezione428 Fine patriarcato431 PredecessoreSisinio I SuccessoreMassimiano  NascitaGermanicia381 circa MorteKharga451 circa Manuale San Nestorio Arcivescovo, teologo e Dottore della Chiesa Assira  NascitaGermanicia, 381 circa MorteKharga, 451 circa Venerato daChiesa assira d'Oriente Ricorrenza25 ottobre Manuale Nestorio, o Nestore (Germanicia, 381 circa – Kharga...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!