Part-of-speech tagging

In corpus linguistics, part-of-speech tagging (POS tagging or PoS tagging or POST), also called grammatical tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech,[1] based on both its definition and its context. A simplified form of this is commonly taught to school-age children, in the identification of words as nouns, verbs, adjectives, adverbs, etc.

Once performed by hand, POS tagging is now done in the context of computational linguistics, using algorithms which associate discrete terms, as well as hidden parts of speech, by a set of descriptive tags. POS-tagging algorithms fall into two distinctive groups: rule-based and stochastic. E. Brill's tagger, one of the first and most widely used English POS-taggers, employs rule-based algorithms.

Principle

Part-of-speech tagging is harder than just having a list of words and their parts of speech, because some words can represent more than one part of speech at different times, and because some parts of speech are complex. This is not rare—in natural languages (as opposed to many artificial languages), a large percentage of word-forms are ambiguous. For example, even "dogs", which is usually thought of as just a plural noun, can also be a verb:

The sailor dogs the hatch.

Correct grammatical tagging will reflect that "dogs" is here used as a verb, not as the more common plural noun. Grammatical context is one way to determine this; semantic analysis can also be used to infer that "sailor" and "hatch" implicate "dogs" as 1) in the nautical context and 2) an action applied to the object "hatch" (in this context, "dogs" is a nautical term meaning "fastens (a watertight door) securely").

Tag sets

Schools commonly teach that there are 9 parts of speech in English: noun, verb, article, adjective, preposition, pronoun, adverb, conjunction, and interjection. However, there are clearly many more categories and sub-categories. For nouns, the plural, possessive, and singular forms can be distinguished. In many languages words are also marked for their "case" (role as subject, object, etc.), grammatical gender, and so on; while verbs are marked for tense, aspect, and other things. In some tagging systems, different inflections of the same root word will get different parts of speech, resulting in a large number of tags. For example, NN for singular common nouns, NNS for plural common nouns, NP for singular proper nouns (see the POS tags used in the Brown Corpus). Other tagging systems use a smaller number of tags and ignore fine differences or model them as features somewhat independent from part-of-speech.[2]

In part-of-speech tagging by computer, it is typical to distinguish from 50 to 150 separate parts of speech for English. Work on stochastic methods for tagging Koine Greek (DeRose 1990) has used over 1,000 parts of speech and found that about as many words were ambiguous in that language as in English. A morphosyntactic descriptor in the case of morphologically rich languages is commonly expressed using very short mnemonics, such as Ncmsan for Category=Noun, Type = common, Gender = masculine, Number = singular, Case = accusative, Animate = no.

The most popular "tag set" for POS tagging for American English is probably the Penn tag set, developed in the Penn Treebank project. It is largely similar to the earlier Brown Corpus and LOB Corpus tag sets, though much smaller. In Europe, tag sets from the Eagles Guidelines see wide use and include versions for multiple languages.

POS tagging work has been done in a variety of languages, and the set of POS tags used varies greatly with language. Tags usually are designed to include overt morphological distinctions, although this leads to inconsistencies such as case-marking for pronouns but not nouns in English, and much larger cross-language differences. The tag sets for heavily inflected languages such as Greek and Latin can be very large; tagging words in agglutinative languages such as Inuit languages may be virtually impossible. At the other extreme, Petrov et al.[3] have proposed a "universal" tag set, with 12 categories (for example, no subtypes of nouns, verbs, punctuation, and so on). Whether a very small set of very broad tags or a much larger set of more precise ones is preferable, depends on the purpose at hand. Automatic tagging is easier on smaller tag-sets.

History

The Brown Corpus

Research on part-of-speech tagging has been closely tied to corpus linguistics. The first major corpus of English for computer analysis was the Brown Corpus developed at Brown University by Henry Kučera and W. Nelson Francis, in the mid-1960s. It consists of about 1,000,000 words of running English prose text, made up of 500 samples from randomly chosen publications. Each sample is 2,000 or more words (ending at the first sentence-end after 2,000 words, so that the corpus contains only complete sentences).

The Brown Corpus was painstakingly "tagged" with part-of-speech markers over many years. A first approximation was done with a program by Greene and Rubin, which consisted of a huge handmade list of what categories could co-occur at all. For example, article then noun can occur, but article then verb (arguably) cannot. The program got about 70% correct. Its results were repeatedly reviewed and corrected by hand, and later users sent in errata so that by the late 70s the tagging was nearly perfect (allowing for some cases on which even human speakers might not agree).

This corpus has been used for innumerable studies of word-frequency and of part-of-speech and inspired the development of similar "tagged" corpora in many other languages. Statistics derived by analyzing it formed the basis for most later part-of-speech tagging systems, such as CLAWS and VOLSUNGA. However, by this time (2005) it has been superseded by larger corpora such as the 100 million word British National Corpus, even though larger corpora are rarely so thoroughly curated.

For some time, part-of-speech tagging was considered an inseparable part of natural language processing, because there are certain cases where the correct part of speech cannot be decided without understanding the semantics or even the pragmatics of the context. This is extremely expensive, especially because analyzing the higher levels is much harder when multiple part-of-speech possibilities must be considered for each word.

Use of hidden Markov models

In the mid-1980s, researchers in Europe began to use hidden Markov models (HMMs) to disambiguate parts of speech, when working to tag the Lancaster-Oslo-Bergen Corpus of British English. HMMs involve counting cases (such as from the Brown Corpus) and making a table of the probabilities of certain sequences. For example, once you've seen an article such as 'the', perhaps the next word is a noun 40% of the time, an adjective 40%, and a number 20%. Knowing this, a program can decide that "can" in "the can" is far more likely to be a noun than a verb or a modal. The same method can, of course, be used to benefit from knowledge about the following words.

More advanced ("higher-order") HMMs learn the probabilities not only of pairs but triples or even larger sequences. So, for example, if you've just seen a noun followed by a verb, the next item may be very likely a preposition, article, or noun, but much less likely another verb.

When several ambiguous words occur together, the possibilities multiply. However, it is easy to enumerate every combination and to assign a relative probability to each one, by multiplying together the probabilities of each choice in turn. The combination with the highest probability is then chosen. The European group developed CLAWS, a tagging program that did exactly this and achieved accuracy in the 93–95% range.

Eugene Charniak points out in Statistical techniques for natural language parsing (1997)[4] that merely assigning the most common tag to each known word and the tag "proper noun" to all unknowns will approach 90% accuracy because many words are unambiguous, and many others only rarely represent their less-common parts of speech.

CLAWS pioneered the field of HMM-based part of speech tagging but was quite expensive since it enumerated all possibilities. It sometimes had to resort to backup methods when there were simply too many options (the Brown Corpus contains a case with 17 ambiguous words in a row, and there are words such as "still" that can represent as many as 7 distinct parts of speech.[5]

HMMs underlie the functioning of stochastic taggers and are used in various algorithms one of the most widely used being the bi-directional inference algorithm.[6]

Dynamic programming methods

In 1987, Steven DeRose[7] and Kenneth W. Church[8] independently developed dynamic programming algorithms to solve the same problem in vastly less time. Their methods were similar to the Viterbi algorithm known for some time in other fields. DeRose used a table of pairs, while Church used a table of triples and a method of estimating the values for triples that were rare or nonexistent in the Brown Corpus (an actual measurement of triple probabilities would require a much larger corpus). Both methods achieved an accuracy of over 95%. DeRose's 1990 dissertation at Brown University included analyses of the specific error types, probabilities, and other related data, and replicated his work for Greek, where it proved similarly effective.

These findings were surprisingly disruptive to the field of natural language processing. The accuracy reported was higher than the typical accuracy of very sophisticated algorithms that integrated part of speech choice with many higher levels of linguistic analysis: syntax, morphology, semantics, and so on. CLAWS, DeRose's and Church's methods did fail for some of the known cases where semantics is required, but those proved negligibly rare. This convinced many in the field that part-of-speech tagging could usefully be separated from the other levels of processing; this, in turn, simplified the theory and practice of computerized language analysis and encouraged researchers to find ways to separate other pieces as well. Markov Models became the standard method for the part-of-speech assignment.

Unsupervised taggers

The methods already discussed involve working from a pre-existing corpus to learn tag probabilities. It is, however, also possible to bootstrap using "unsupervised" tagging. Unsupervised tagging techniques use an untagged corpus for their training data and produce the tagset by induction. That is, they observe patterns in word use, and derive part-of-speech categories themselves. For example, statistics readily reveal that "the", "a", and "an" occur in similar contexts, while "eat" occurs in very different ones. With sufficient iteration, similarity classes of words emerge that are remarkably similar to those human linguists would expect; and the differences themselves sometimes suggest valuable new insights.

These two categories can be further subdivided into rule-based, stochastic, and neural approaches.

Other taggers and methods

Some current major algorithms for part-of-speech tagging include the Viterbi algorithm, Brill tagger, Constraint Grammar, and the Baum-Welch algorithm (also known as the forward-backward algorithm). Hidden Markov model and visible Markov model taggers can both be implemented using the Viterbi algorithm. The rule-based Brill tagger is unusual in that it learns a set of rule patterns, and then applies those patterns rather than optimizing a statistical quantity.

Many machine learning methods have also been applied to the problem of POS tagging. Methods such as SVM, maximum entropy classifier, perceptron, and nearest-neighbor have all been tried, and most can achieve accuracy above 95%.[citation needed]

A direct comparison of several methods is reported (with references) at the ACL Wiki.[9] This comparison uses the Penn tag set on some of the Penn Treebank data, so the results are directly comparable. However, many significant taggers are not included (perhaps because of the labor involved in reconfiguring them for this particular dataset). Thus, it should not be assumed that the results reported here are the best that can be achieved with a given approach; nor even the best that have been achieved with a given approach.

In 2014, a paper reporting using the structure regularization method for part-of-speech tagging, achieving 97.36% on a standard benchmark dataset.[10]

See also

References

  1. ^ "POS tags". Sketch Engine. Lexical Computing. 2018-03-27. Retrieved 2018-04-06.
  2. ^ Universal POS tags
  3. ^ Petrov, Slav; Das, Dipanjan; McDonald, Ryan (11 Apr 2011). "A Universal Part-of-Speech Tagset". arXiv:1104.2086 [cs.CL].
  4. ^ Eugene Charniak
  5. ^ DeRose 1990, p. 82.
  6. ^ CLL POS-tagger
  7. ^ DeRose, Steven J. (1988). "Grammatical category disambiguation by statistical optimization". Computational Linguistics. 14 (1): 31–39.
  8. ^ Kenneth Ward Church (1988). "A stochastic parts program and noun phrase parser for unrestricted text". In Norm Sondheimer (ed.). ANLC '88: Proceedings of the Second Conference on Applied Natural Language Processing. Association for Computational Linguistics. p. 136. doi:10.3115/974235.974260.
  9. ^ POS Tagging (State of the art)
  10. ^ Xu Sun (2014). Structure Regularization for Structured Prediction (PDF). Neural Information Processing Systems (NIPS). pp. 2402–2410. Retrieved 2021-08-20.

Works cited

  • Charniak, Eugene. 1997. "Statistical Techniques for Natural Language Parsing". AI Magazine 18(4):33–44.
  • Hans van Halteren, Jakub Zavrel, Walter Daelemans. 2001. Improving Accuracy in NLP Through Combination of Machine Learning Systems. Computational Linguistics. 27(2): 199–229. PDF
  • DeRose, Steven J. 1990. "Stochastic Methods for Resolution of Grammatical Category Ambiguity in Inflected and Uninflected Languages." Ph.D. Dissertation. Providence, RI: Brown University Department of Cognitive and Linguistic Sciences. Electronic Edition available at [1]
  • D.Q. Nguyen, D.Q. Nguyen, D.D. Pham and S.B. Pham (2016). "A Robust Transformation-Based Learning Approach Using Ripple Down Rules for Part-Of-Speech Tagging." AI Communications, vol. 29, no. 3, pages 409–422. [.pdf]

Read other articles:

British TV series or programme Life BeginsCreated byMike BullenStarringCaroline QuentinAlexander ArmstrongElliot Henderson BoyleAce Destiny RyanAnne ReidFrank FinlayCountry of originUnited KingdomOriginal languageEnglishNo. of series3No. of episodes19 (list of episodes)ProductionExecutive producersAndy HarriesMike BullenProducersJohn Chapman (Series 1–2)Emma Benson (Series 3)Mark Hudson (Series 3)EditorsPaul MachlissSimon ReglarChris BarwellClive BarrettDavid BlackmoreRunning time60 mi...

 

Prof. Dr. (H.C.)T.M. Hasbi Ash ShiddieqyPotret sebagai Anggota Konstituante (1956—1959)Lahir(1904-03-10)10 Maret 1904Lhokseumawe, Aceh, Hindia BelandaMeninggal9 Desember 1975(1975-12-09) (umur 71)Jakarta, IndonesiaKebangsaanIndonesiaDikenal atasAhli Tafsir Al-Qur'anGelarTGKSuami/istriTengku Nyak Asiyah binti Tengku Haji Hanum[1]Anak4 Prof. Dr. (H.C.) Teungku Muhammad Hasbi Ash-Shiddieqy (10 Maret 1904 – 9 Desember 1975)[2][3] adalah ulama, ahli f...

 

Montañas Dartry Ubicación geográficaCoordenadas 54°20′00″N 8°25′00″O / 54.333333333333, -8.4166666666667Ubicación administrativaPaís  IrlandaCaracterísticasMáxima cota Trosc Mór (647 m)Mapa de localización Montañas Dartry Ubicación (Irlanda).[editar datos en Wikidata]  Las montañas Dartry (en irlandés: Sléibhte Dhartraí )[1]​ son una cadena montañosa en el noroeste de Irlanda, en el norte de los condados de Sligo y Leitr...

What Dreams May Come First editionAuthorRichard MathesonCountryUnited StatesLanguageEnglishGenreBangsian fantasyPublisherG. P. Putnam's SonsPublication dateSeptember 1978Media typePrint (Hardback & Paperback)Pages288 ppISBN0-399-12148-X What Dreams May Come is a 1978 novel by Richard Matheson. The plot centers on Chris, a man who dies then goes to Heaven, but descends into Hell to rescue his wife. It was adapted in 1998 into the Academy Award-winning film What Dreams May Come starrin...

 

Dzerkalo TyzhniaTypeWeekly newspaperFormatBroadsheetEditor-in-chiefYulia MostovaFounded1994Headquarters6 Tverska Street, KyivCirculation57,000 (2006)ISSN1563-6437Websitezn.ua Dzerkalo Tyzhnia (Ukrainian: Дзеркало тижня, Russian: Зеркало недели), usually referred to in English as the Mirror of the week, was one of Ukraine's most influential analytical weekly-publisher newspapers, founded in 1994.[1][2] On 27 December 2019 it published its last pri...

 

Colonial election for New South Wales 1887 New South Wales colonial election ← 1885 4 February 1887 – 26 February 1887 1889 → All 124 seats in the New South Wales Legislative Assembly63 Assembly seats were needed for a majority   First party Second party   Leader Sir Henry Parkes George Dibbs Party Free Trade Protectionist Leader since 1886 20 January 1887 Leader's seat St Leonards Murrumbidgee Seats won 79 seats 37 seats Percentage 60.75% 32.8...

Johann Gerhard (um 1618), Porträt in der Friedrich-Schiller-Universität Jena Johann Gerhard, auch Johannes Gerhard (* 17. Oktober 1582 in Quedlinburg; † 17. August 1637 in Jena) war ein deutscher lutherischer Theologe und gilt als ein bedeutender Vertreter der lutherischen Orthodoxie. Inhaltsverzeichnis 1 Leben 2 Familie 3 Theologische Bedeutung 4 Werke 4.1 Erstausgaben 4.2 Übersetzungen, Neuherausgaben 4.3 Handschriften 4.4 Kritische Werkausgaben 5 Gedenktag 6 Literatur 6.1 Nachschlagew...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tammari people – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this template message) A Tammari house. The thatched structure in the middle of the roof (left) covers sleeping quarters, whereas the one on the right is a...

 

Director of the Central Intelligence Agency from 2013 to 2017 For other people with similar names, see John Brennan. John Brennan5th Director of the Central Intelligence AgencyIn officeMarch 8, 2013 – January 20, 2017PresidentBarack ObamaDeputyAvril HainesDavid CohenPreceded byDavid PetraeusSucceeded byMike Pompeo5th United States Homeland Security AdvisorIn officeJanuary 20, 2009 – March 8, 2013PresidentBarack ObamaPreceded byKen WainsteinSucceeded byLisa MonacoActing D...

Alphabet used to write the Armenian language ArmenianScript type Alphabet CreatorMesrop MashtotsTime periodAD 405 to present[1]Directionleft-to-right Official script ArmeniaLanguagesArmenianRelated scriptsParent systemsGreek[2]ArmenianChild systemsCaucasian Albanian[3][4]Sister systemsLatinCopticCyrillicISO 15924ISO 15924Armn (230), ​ArmenianUnicodeUnicode aliasArmenianUnicode rangeU+0530–U+058F ArmenianU+FB00–U+FB17 Alphabetic Pres. F...

 

Species of lizard Varanus spinulosus Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Squamata Family: Varanidae Genus: Varanus Subgenus: Solomonsaurus Species: V. spinulosus Binomial name Varanus spinulosusMertens, 1941 Synonyms[2] Varanus indicus spinulosus Mertens, 1941 Varanus spinulosus, the Solomon Island spiny monitor, Isabel monitor,[1][2] or s...

 

Shrine of Baha'al-Halimمقبرہ بہاول حلیمLocationUch, Punjab, PakistanTypeSufi shrine and Mausoleum Shrine of Baha'al-Halim (Urdu: مقبرہ بہاول حلیم) is the shrine of Baha'al-Halim, an Islamic saint. It is the earliest of three located in Uch in present-day Punjab, Pakistan.[1][2] It is one of the five monuments in Uch Sharif, Pakistan which are on the tentative list of the UNESCO World Heritage Sites.[3] The octagonal tomb is built of glazed b...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Monad transformer – news · newspapers · books · scholar · JSTOR (November 2023) In functional programming, a monad transformer is a type constructor which takes a monad as an argument and returns a monad as a result. Monad transformers can be used to ...

 

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Camila Sodi – news · newspapers · books · scholar · JSTOR (October 2022) (Learn how and when to remove this template message) Mexican singer, actr...

 

Chronologies Données clés 2006 2007 2008  2009  2010 2011 2012Décennies :1970 1980 1990  2000  2010 2020 2030Siècles :XIXe XXe  XXIe  XXIIe XXIIIeMillénaires :Ier IIe  IIIe  Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, Centrafrique, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égypte, Érythrée, Éth...

Italian electro wave, dark wave, future pop, and synthpop band This article is about the band. For other uses, see Kirlian Camera (disambiguation). Kirlian CameraKirlian Camera live at Nocturnal Culture Night 2018 in GermanyBackground informationOriginParma, ItalyGenresElectro Wave, dark waveYears active1980–presentLabelsDiscordiaNova TekkTrisolTritonVirgin MusicOut of LineMembersElena Alice FossiAngelo Bergamini Alessandro Algol Comerio Mia Winter WallacePast membersSimona BujaEmilia L...

 

Bystrzanowice-Dwór wieś Państwo  Polska Województwo  śląskie Powiat częstochowski Gmina Janów Liczba ludności (2022) 105[2] Kod pocztowy 42-253[3] Tablice rejestracyjne SCZ SIMC 0133161 Położenie na mapie gminy JanówBystrzanowice-Dwór Położenie na mapie PolskiBystrzanowice-Dwór Położenie na mapie województwa śląskiegoBystrzanowice-Dwór Położenie na mapie powiatu częstochowskiegoBystrzanowice-Dwór 50°41′24″N 19°31′04″E/50,690000 19,...

 

Questa voce o sezione sull'argomento sovrani svedesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Carlo VIII (II) di SveziaRe Carlo VIII di Svezia in una scultura di Bernt NotkeRe di SveziaStemma In carica20 giugno 1448 -24 febbraio 1457 (I)9 agosto 1464 -15 maggio 1470 (II)[1] Incoronazione28 giugno 1448 PredecessoreCristoforo (I)Cristiano I ...

Основная статья: Криптография Прослушать введение в статью noicon Аудиозапись создана на основе версии статьи от 25 августа 2021 года История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии используют технологические х...

 

La Lagunita de los Jasso Osnovni podaci Država  Meksiko Savezna država San Luis Potosí Opština Villa de Reyes Stanovništvo Stanovništvo (2014.) 87[1] Geografija Koordinate 21°55′35″N 100°56′59″W / 21.92639°N 100.94972°W / 21.92639; -100.94972 Vremenska zona UTC-6, leti UTC-5 Nadmorska visina 1903[1] m La Lagunita de los JassoLa Lagunita de los Jasso na karti Meksika La Lagunita de los Jasso je naselje u Meksiku, u saveznoj držav...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!