In 2005, Australian pathologist and researcher Thomas John Martin found that PTHrP produced by osteoblasts is a physiological regulator of bone formation.[6] Martin and Miao et al. demonstrated that osteoblast-specific ablation of PTHrP in mice results in osteoporosis and impaired bone formation both in vivo and ex vivo, which reiterates the phenotype of mice with haploinsufficiency of PTHrP. By these findings, they demonstrated that PTHrP plays a central role in physiological regulation of bone formation by promoting recruitment and survival of osteoblasts. It may also play a role in physiological regulation of bone resorption by enhancing osteoclast formation.[6]
Tooth eruption
PTHrP is critical in intraosseous phase of tooth eruption where it acts as a signalling molecule to stimulate local bone resorption.[7] Without PTHrP, the bony crypt surrounding the tooth follicle will not resorb, and therefore the tooth will not erupt. In the context of tooth eruption, PTHrP is secreted by the cells of the reduced enamel epithelium.[8]
PTHrP is related in function to parathyroid hormone(PTH). When a tumor secretes PTHrP, this can lead to hypercalcemia.[11] As this is sometimes the first sign of the malignancy, hypercalcemia caused by PTHrP is considered a paraneoplastic phenomenon. PTHrP is responsible for most cases of humoral hypercalcemia of malignancy.
PTHrP shares the same N-terminal end as parathyroid hormone and therefore it can bind to the same receptor, the Type I PTH receptor (PTHR1).[12] PTHrP can simulate most of the actions of PTH including increases in bone resorption and distal tubular calcium reabsorption, and inhibition of proximal tubular phosphate transport. PTHrP lacks the normal feedback inhibition as PTH.[13]
However, PTHrP has a less sustained action than PTH on PTHR1 activation, which may explain at least in part its reduced ability to stimulate 1,25-dihydroxyvitamin D (1,25(OH)2 vitamin D) production and indirectly intestinal calcium absorption through an action to increase circulating levels of 1,25(OH)2 vitamin D.[14]
Growth Plate
PTHrP is found in the proliferative zone of the growth plate. It is one of the main proteins that regulates mesenchymal stem cell activity. Current research suggests that PTHrP promotes the proliferation of early-phase chondrocytes and inhibits their differentiation into hypertropic chondrocytes. It is involved in a negative feedback loop with Indian Hedgehog (Ihh). [15]
Genetics
Four alternatively spliced transcript variants encoding two distinct isoforms have been observed. There is also evidence for alternative translation initiation from non-AUG (CUG and GUG) start sites, in-frame and downstream of the initiator AUG codon, to give rise to nuclear forms of this hormone.[16]
Discovery
The protein was first isolated in 1987 by Thomas J. Martin's team at the University of Melbourne.[17][18] Miao et al. showed that disruption of the PTHrP gene in mice caused a lethal phenotype and distinct bone abnormalities, suggesting that PTHrP has a physiological function.[19]
^Broadus AE, Mangin M, Ikeda K, Insogna KL, Weir EC, Burtis WJ, Stewart AF (September 1988). "Humoral hypercalcemia of cancer. Identification of a novel parathyroid hormone-like peptide". The New England Journal of Medicine. 319 (9): 556–563. doi:10.1056/NEJM198809013190906. PMID3043221.
^Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, et al. (November 1991). "A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide". Science. 254 (5034): 1024–1026. Bibcode:1991Sci...254.1024J. doi:10.1126/science.1658941. PMID1658941.
^Stewart AF (January 2005). "Clinical practice. Hypercalcemia associated with cancer". The New England Journal of Medicine. 352 (4): 373–379. doi:10.1056/NEJMcp042806. PMID15673803.
^Kronenberg, H. M. “PTHrP and Skeletal Development.” Annals of the New York Academy of Sciences 1068, no. 1 (April 1, 2006): 1–13. https://doi.org/10.1196/annals.1346.002.
^Lam MH, Hu W, Xiao CY, Gillespie MT, Jans DA (March 2001). "Molecular dissection of the importin beta1-recognized nuclear targeting signal of parathyroid hormone-related protein". Biochemical and Biophysical Research Communications. 282 (2): 629–634. doi:10.1006/bbrc.2001.4607. PMID11401507.
^Conlan LA, Martin TJ, Gillespie MT (September 2002). "The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with beta-arrestin 1B". FEBS Letters. 527 (1–3): 71–75. doi:10.1016/S0014-5793(02)03164-2. PMID12220636. S2CID83640616.
Casey ML, MacDonald PC (October 1996). "The endothelin-parathyroid hormone-related protein vasoactive peptide system in human endometrium: modulation by transforming growth factor-beta". Human Reproduction. 11 (Suppl 2): 62–82. doi:10.1093/humrep/11.suppl_2.62. PMID8982748.
Lam MH, Thomas RJ, Martin TJ, Gillespie MT, Jans DA (August 2000). "Nuclear and nucleolar localization of parathyroid hormone-related protein". Immunology and Cell Biology. 78 (4): 395–402. doi:10.1046/j.1440-1711.2000.00919.x. PMID10947864. S2CID23048105.
Jans DA, Thomas RJ, Gillespie MT (2003). Parathyroid hormone-related protein (PTHrP): a nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. Vitamins & Hormones. Vol. 66. pp. 345–84. doi:10.1016/S0083-6729(03)01010-0. ISBN978-0-12-709866-1. PMID12852260.
Fenton AJ, Kemp BE, Kent GN, Moseley JM, Zheng MH, Rowe DJ, et al. (October 1991). "A carboxyl-terminal peptide from the parathyroid hormone-related protein inhibits bone resorption by osteoclasts". Endocrinology. 129 (4): 1762–1768. doi:10.1210/endo-129-4-1762. PMID1915066.
Fenton AJ, Kemp BE, Hammonds RG, Mitchelhill K, Moseley JM, Martin TJ, Nicholson GC (December 1991). "A potent inhibitor of osteoclastic bone resorption within a highly conserved pentapeptide region of parathyroid hormone-related protein; PTHrP[107-111]". Endocrinology. 129 (6): 3424–3426. doi:10.1210/endo-129-6-3424. PMID1954916.
Moniz C, Burton PB, Malik AN, Dixit M, Banga JP, Nicolaides K, et al. (December 1990). "Parathyroid hormone-related peptide in normal human fetal development". Journal of Molecular Endocrinology. 5 (3): 259–266. doi:10.1677/jme.0.0050259. PMID2288637.
Suva LJ, Mather KA, Gillespie MT, Webb GC, Ng KW, Winslow GA, et al. (April 1989). "Structure of the 5' flanking region of the gene encoding human parathyroid-hormone-related protein (PTHrP)". Gene. 77 (1): 95–105. doi:10.1016/0378-1119(89)90363-6. PMID2744490.
Seitz PK, Cooper KM, Ives KL, Ishizuka J, Townsend CM, Rajaraman S, Cooper CW (September 1993). "Parathyroid hormone-related peptide production and action in a myoepithelial cell line derived from normal human breast". Endocrinology. 133 (3): 1116–1124. doi:10.1210/endo.133.3.8396010. PMID8396010.