This page lists examples of magnetic moments produced by various sources, grouped by orders of magnitude. The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla) on its surface.
Knowing the magnetic moment of an object () and the distance from its centre () it is possible to calculate the magnetic flux density experienced () using the following approximation:
^Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E. (May 2017). "Accuracy of magnetic resonance based susceptibility measurements". AIP Advances. 7 (5). doi:10.1063/1.4975700. The SQUID magnetometer is calibrated with a NIST YIG (yttrium iron garnet) sphere standard reference material (SRM #2852) whose room temperature moment is (79.9 ± 0.3) × 10−6 A·m2
^Cookson, Esther; Nelson, David; Michael, Anderson; McKinney, Daniel L.; Barsukov, Igor (2019). "Exploring Magnetic Resonance with a Compass". Phys. Teach.57 (9): 633–635. arXiv:1810.11141. doi:10.1119/1.5135797. Retrieved 2024-08-09. For a thumbnail-sized compass, we (empirically) estimate the magnetic moment to 0.86×10−3 A⋅m2 and the moment of inertia to 1.03×10−11 kg⋅m2.
^ abcdefDurand-Manterola, Hector Javier (2010-07-26). "Dipolar Magnetic Moment of the Bodies of the Solar System and the Hot Jupiters". arXiv:1007.4497 [astro-ph.EP].
^Magnetars have enormous magnetic flux densities on their surfaces due to the small radius, however the total magnetic field of the original star does not increase during the collapse, but actually decreases with time. Cf. Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields". arXiv:astro-ph/0307133. Generally speaking, young neutron stars appear to have strong magnetic fields ∼1011−15G ('classical' radio pulsars, 'magnetars', X-ray pulsars), whereas old neutron stars have weak fields ≲ 109G (ms pulsars, lowmass X-ray binaries). If these two groups have an evolutionary connection, their dipole moment must decay. Millisecond pulsars are believed to have been spun up to their fast rotation by accretion from a binary companion, a remnant of which is in most cases still present (e.g., Phinney & Kulkarni 1994). The reduction in the magnetic dipole moment may be a direct or indirect consequence of the accretion process, or just an effect of age.