Spectral theory eigenvalue
In mathematics, specifically in spectral theory , an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where
A
− − -->
λ λ -->
I
{\displaystyle A-\lambda I}
has a bounded inverse.
The set of normal eigenvalues coincides with the discrete spectrum .
Root lineal
Let
B
{\displaystyle {\mathfrak {B}}}
be a Banach space . The root lineal
L
λ λ -->
(
A
)
{\displaystyle {\mathfrak {L}}_{\lambda }(A)}
of a linear operator
A
:
B
→ → -->
B
{\displaystyle A:\,{\mathfrak {B}}\to {\mathfrak {B}}}
with domain
D
(
A
)
{\displaystyle {\mathfrak {D}}(A)}
corresponding to the eigenvalue
λ λ -->
∈ ∈ -->
σ σ -->
p
(
A
)
{\displaystyle \lambda \in \sigma _{p}(A)}
is defined as
L
λ λ -->
(
A
)
=
⋃ ⋃ -->
k
∈ ∈ -->
N
{
x
∈ ∈ -->
D
(
A
)
:
(
A
− − -->
λ λ -->
I
B
)
j
x
∈ ∈ -->
D
(
A
)
∀ ∀ -->
j
∈ ∈ -->
N
,
j
≤ ≤ -->
k
;
(
A
− − -->
λ λ -->
I
B
)
k
x
=
0
}
⊂ ⊂ -->
B
,
{\displaystyle {\mathfrak {L}}_{\lambda }(A)=\bigcup _{k\in \mathbb {N} }\{x\in {\mathfrak {D}}(A):\,(A-\lambda I_{\mathfrak {B}})^{j}x\in {\mathfrak {D}}(A)\,\forall j\in \mathbb {N} ,\,j\leq k;\,(A-\lambda I_{\mathfrak {B}})^{k}x=0\}\subset {\mathfrak {B}},}
where
I
B
{\displaystyle I_{\mathfrak {B}}}
is the identity operator in
B
{\displaystyle {\mathfrak {B}}}
.
This set is a linear manifold but not necessarily a vector space , since it is not necessarily closed in
B
{\displaystyle {\mathfrak {B}}}
. If this set is closed (for example, when it is finite-dimensional), it is called the generalized eigenspace of
A
{\displaystyle A}
corresponding to the eigenvalue
λ λ -->
{\displaystyle \lambda }
.
Definition of a normal eigenvalue
An eigenvalue
λ λ -->
∈ ∈ -->
σ σ -->
p
(
A
)
{\displaystyle \lambda \in \sigma _{p}(A)}
of a closed linear operator
A
:
B
→ → -->
B
{\displaystyle A:\,{\mathfrak {B}}\to {\mathfrak {B}}}
in the Banach space
B
{\displaystyle {\mathfrak {B}}}
with domain
D
(
A
)
⊂ ⊂ -->
B
{\displaystyle {\mathfrak {D}}(A)\subset {\mathfrak {B}}}
is called normal (in the original terminology,
λ λ -->
{\displaystyle \lambda }
corresponds to a normally splitting finite-dimensional root subspace ), if the following two conditions are satisfied:
The algebraic multiplicity of
λ λ -->
{\displaystyle \lambda }
is finite:
ν ν -->
=
dim
-->
L
λ λ -->
(
A
)
<
∞ ∞ -->
{\displaystyle \nu =\dim {\mathfrak {L}}_{\lambda }(A)<\infty }
, where
L
λ λ -->
(
A
)
{\displaystyle {\mathfrak {L}}_{\lambda }(A)}
is the root lineal of
A
{\displaystyle A}
corresponding to the eigenvalue
λ λ -->
{\displaystyle \lambda }
;
The space
B
{\displaystyle {\mathfrak {B}}}
could be decomposed into a direct sum
B
=
L
λ λ -->
(
A
)
⊕ ⊕ -->
N
λ λ -->
{\displaystyle {\mathfrak {B}}={\mathfrak {L}}_{\lambda }(A)\oplus {\mathfrak {N}}_{\lambda }}
, where
N
λ λ -->
{\displaystyle {\mathfrak {N}}_{\lambda }}
is an invariant subspace of
A
{\displaystyle A}
in which
A
− − -->
λ λ -->
I
B
{\displaystyle A-\lambda I_{\mathfrak {B}}}
has a bounded inverse.
That is, the restriction
A
2
{\displaystyle A_{2}}
of
A
{\displaystyle A}
onto
N
λ λ -->
{\displaystyle {\mathfrak {N}}_{\lambda }}
is an operator with domain
D
(
A
2
)
=
N
λ λ -->
∩ ∩ -->
D
(
A
)
{\displaystyle {\mathfrak {D}}(A_{2})={\mathfrak {N}}_{\lambda }\cap {\mathfrak {D}}(A)}
and with the range
R
(
A
2
− − -->
λ λ -->
I
)
⊂ ⊂ -->
N
λ λ -->
{\displaystyle {\mathfrak {R}}(A_{2}-\lambda I)\subset {\mathfrak {N}}_{\lambda }}
which has a bounded inverse.[ 1] [ 2] [ 3]
Equivalent characterizations of normal eigenvalues
Let
A
:
B
→ → -->
B
{\displaystyle A:\,{\mathfrak {B}}\to {\mathfrak {B}}}
be a closed linear densely defined operator in the Banach space
B
{\displaystyle {\mathfrak {B}}}
. The following statements are equivalent[ 4] (Theorem III.88):
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is a normal eigenvalue;
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is an isolated point in
σ σ -->
(
A
)
{\displaystyle \sigma (A)}
and
A
− − -->
λ λ -->
I
B
{\displaystyle A-\lambda I_{\mathfrak {B}}}
is semi-Fredholm ;
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is an isolated point in
σ σ -->
(
A
)
{\displaystyle \sigma (A)}
and
A
− − -->
λ λ -->
I
B
{\displaystyle A-\lambda I_{\mathfrak {B}}}
is Fredholm ;
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is an isolated point in
σ σ -->
(
A
)
{\displaystyle \sigma (A)}
and
A
− − -->
λ λ -->
I
B
{\displaystyle A-\lambda I_{\mathfrak {B}}}
is Fredholm of index zero;
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is an isolated point in
σ σ -->
(
A
)
{\displaystyle \sigma (A)}
and the rank of the corresponding Riesz projector
P
λ λ -->
{\displaystyle P_{\lambda }}
is finite;
λ λ -->
∈ ∈ -->
σ σ -->
(
A
)
{\displaystyle \lambda \in \sigma (A)}
is an isolated point in
σ σ -->
(
A
)
{\displaystyle \sigma (A)}
, its algebraic multiplicity
ν ν -->
=
dim
-->
L
λ λ -->
(
A
)
{\displaystyle \nu =\dim {\mathfrak {L}}_{\lambda }(A)}
is finite, and the range of
A
− − -->
λ λ -->
I
B
{\displaystyle A-\lambda I_{\mathfrak {B}}}
is closed .[ 1] [ 2] [ 3]
If
λ λ -->
{\displaystyle \lambda }
is a normal eigenvalue, then the root lineal
L
λ λ -->
(
A
)
{\displaystyle {\mathfrak {L}}_{\lambda }(A)}
coincides with the range of the Riesz projector,
R
(
P
λ λ -->
)
{\displaystyle {\mathfrak {R}}(P_{\lambda })}
.[ 3]
Relation to the discrete spectrum
The above equivalence shows that the set of normal eigenvalues coincides with the discrete spectrum , defined as the set of isolated points of the spectrum with finite rank of the corresponding Riesz projector.[ 5]
Decomposition of the spectrum of nonselfadjoint operators
The spectrum of a closed operator
A
:
B
→ → -->
B
{\displaystyle A:\,{\mathfrak {B}}\to {\mathfrak {B}}}
in the Banach space
B
{\displaystyle {\mathfrak {B}}}
can be decomposed into the union of two disjoint sets, the set of normal eigenvalues and the fifth type of the essential spectrum :
σ σ -->
(
A
)
=
{
normal eigenvalues of
A
}
∪ ∪ -->
σ σ -->
e
s
s
,
5
(
A
)
.
{\displaystyle \sigma (A)=\{{\text{normal eigenvalues of}}\ A\}\cup \sigma _{\mathrm {ess} ,5}(A).}
See also
References
^ a b Gohberg, I. C; Kreĭn, M. G. (1957). "Основные положения о дефектных числах, корневых числах и индексах линейных операторов" [Fundamental aspects of defect numbers, root numbers and indexes of linear operators]. Uspekhi Mat. Nauk [Amer. Math. Soc. Transl. (2) ]. New Series. 12 (2(74)): 43–118.
^ a b Gohberg, I. C; Kreĭn, M. G. (1960). "Fundamental aspects of defect numbers, root numbers and indexes of linear operators" . American Mathematical Society Translations . 13 : 185–264. doi :10.1090/trans2/013/08 .
^ a b c Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators . American Mathematical Society, Providence, R.I.
^ Boussaid, N.; Comech, A. (2019). Nonlinear Dirac equation. Spectral stability of solitary waves . American Mathematical Society, Providence, R.I. ISBN 978-1-4704-4395-5 .
^ Reed, M.; Simon, B. (1978). Methods of modern mathematical physics, vol. IV. Analysis of operators . Academic Press [Harcourt Brace Jovanovich Publishers], New York.
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Basic concepts Main results Special Elements/Operators Spectrum Decomposition Spectral Theorem Special algebras Finite-Dimensional Generalizations Miscellaneous Examples Applications