Minimax estimator

In statistical decision theory, where we are faced with the problem of estimating a deterministic parameter (vector) from observations an estimator (estimation rule) is called minimax if its maximal risk is minimal among all estimators of . In a sense this means that is an estimator which performs best in the worst possible case allowed in the problem.

Problem setup

Consider the problem of estimating a deterministic (not Bayesian) parameter from noisy or corrupt data related through the conditional probability distribution . Our goal is to find a "good" estimator for estimating the parameter , which minimizes some given risk function . Here the risk function (technically a Functional or Operator since is a function of a function, NOT function composition) is the expectation of some loss function with respect to . A popular example for a loss function[1] is the squared error loss , and the risk function for this loss is the mean squared error (MSE).

Unfortunately, in general, the risk cannot be minimized since it depends on the unknown parameter itself (If we knew what was the actual value of , we wouldn't need to estimate it). Therefore additional criteria for finding an optimal estimator in some sense are required. One such criterion is the minimax criterion.

Definition

Definition : An estimator is called minimax with respect to a risk function if it achieves the smallest maximum risk among all estimators, meaning it satisfies

Least favorable distribution

Logically, an estimator is minimax when it is the best in the worst case. Continuing this logic, a minimax estimator should be a Bayes estimator with respect to a least favorable prior distribution of . To demonstrate this notion denote the average risk of the Bayes estimator with respect to a prior distribution as

Definition: A prior distribution is called least favorable if for every other distribution the average risk satisfies .

Theorem 1: If then:

  1. is minimax.
  2. If is a unique Bayes estimator, it is also the unique minimax estimator.
  3. is least favorable.

Corollary: If a Bayes estimator has constant risk, it is minimax. Note that this is not a necessary condition.

Example 1: Unfair coin[2][3]: Consider the problem of estimating the "success" rate of a binomial variable, . This may be viewed as estimating the rate at which an unfair coin falls on "heads" or "tails". In this case the Bayes estimator with respect to a Beta-distributed prior, is

with constant Bayes risk

and, according to the Corollary, is minimax.

Definition: A sequence of prior distributions is called least favorable if for any other distribution ,

Theorem 2: If there are a sequence of priors and an estimator such that , then :

  1. is minimax.
  2. The sequence is least favorable.

Notice that no uniqueness is guaranteed here. For example, the ML estimator from the previous example may be attained as the limit of Bayes estimators with respect to a uniform prior, with increasing support and also with respect to a zero-mean normal prior with increasing variance. So neither the resulting ML estimator is unique minimax nor the least favorable prior is unique.

Example 2: Consider the problem of estimating the mean of dimensional Gaussian random vector, . The maximum likelihood (ML) estimator for in this case is simply , and its risk is

MSE of maximum likelihood estimator versus James–Stein estimator

The risk is constant, but the ML estimator is actually not a Bayes estimator, so the Corollary of Theorem 1 does not apply. However, the ML estimator is the limit of the Bayes estimators with respect to the prior sequence , and, hence, indeed minimax according to Theorem 2. Nonetheless, minimaxity does not always imply admissibility. In fact in this example, the ML estimator is known to be inadmissible (not admissible) whenever . The famous James–Stein estimator dominates the ML whenever . Though both estimators have the same risk when , and they are both minimax, the James–Stein estimator has smaller risk for any finite . This fact is illustrated in the following figure.

Some examples

In general, it is difficult, often even impossible to determine the minimax estimator. Nonetheless, in many cases, a minimax estimator has been determined.

Example 3: Bounded normal mean: When estimating the mean of a normal vector , where it is known that . The Bayes estimator with respect to a prior which is uniformly distributed on the edge of the bounding sphere is known to be minimax whenever . The analytical expression for this estimator is

where , is the modified Bessel function of the first kind of order n.

Asymptotic minimax estimator

The difficulty of determining the exact minimax estimator has motivated the study of estimators of asymptotic minimax – an estimator is called -asymptotic (or approximate) minimax if

For many estimation problems, especially in the non-parametric estimation setting, various approximate minimax estimators have been established. The design of the approximate minimax estimator is intimately related to the geometry, such as the metric entropy number, of .

Randomised minimax estimator

Sometimes, a minimax estimator may take the form of a randomised decision rule. An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two deterministic estimators. Choosing with probability and with probability minimises the supremum risk.

Relationship to robust optimization

Robust optimization is an approach to solve optimization problems under uncertainty in the knowledge of underlying parameters,.[4][5] For instance, the MMSE Bayesian estimation of a parameter requires the knowledge of parameter correlation function. If the knowledge of this correlation function is not perfectly available, a popular minimax robust optimization approach[6] is to define a set characterizing the uncertainty about the correlation function, and then pursuing a minimax optimization over the uncertainty set and the estimator respectively. Similar minimax optimizations can be pursued to make estimators robust to certain imprecisely known parameters. For instance, a recent study dealing with such techniques in the area of signal processing can be found in.[7]

In R. Fandom Noubiap and W. Seidel (2001) an algorithm for calculating a Gamma-minimax decision rule has been developed, when Gamma is given by a finite number of generalized moment conditions. Such a decision rule minimizes the maximum of the integrals of the risk function with respect to all distributions in Gamma. Gamma-minimax decision rules are of interest in robustness studies in Bayesian statistics.

References

  • E. L. Lehmann and G. Casella (1998), Theory of Point Estimation, 2nd ed. New York: Springer-Verlag.
  • F. Perron and E. Marchand (2002), "On the minimax estimator of a bounded normal mean," Statistics and Probability Letters 58: 327–333.
  • R. Fandom Noubiap and W. Seidel (2001), "An Algorithm for Calculating Gamma-Minimax Decision Rules under Generalized Moment Conditions," Annals of Statistics, August, 2001, vol. 29, no. 4, pp. 1094–1116
  • Stein, C. (1981). "Estimation of the mean of a multivariate normal distribution". Annals of Statistics. 9 (6): 1135–1151. doi:10.1214/aos/1176345632. MR 0630098. Zbl 0476.62035.
  1. ^ Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis (2 ed.). New York: Springer-Verlag. pp. xv+425. ISBN 0-387-96098-8. MR 0580664.
  2. ^ Hodges, Jr., J.L.; Lehmann, E.L. (1950). "Some problems in minimax point estimation". Ann. Math. Statist. 21 (2): 182–197. doi:10.1214/aoms/1177729838. JSTOR 2236900. MR 0035949. Zbl 0038.09802.
  3. ^ Steinhaus, Hugon (1957). "The problem of estimation". Ann. Math. Statist. 28 (3): 633–648. doi:10.1214/aoms/1177706876. JSTOR 2237224. MR 0092313. Zbl 0088.35503.
  4. ^ S. A. Kassam and H. V. Poor (1985), "Robust Techniques for Signal Processing: A Survey," Proceedings of the IEEE, vol. 73, pp. 433–481, March 1985.
  5. ^ A. Ben-Tal, L. El Ghaoui, and A. Nemirovski (2009), "Robust Optimization", Princeton University Press, 2009.
  6. ^ S. Verdu and H. V. Poor (1984), "On Minimax Robustness: A general approach and applications," IEEE Transactions on Information Theory, vol. 30, pp. 328–340, March 1984.
  7. ^ M. Danish Nisar. Minimax Robustness in Signal Processing for Communications, Shaker Verlag, ISBN 978-3-8440-0332-1, August 2011.

Read other articles:

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2014-07)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Rhododendron brevipetiolatumSystematikDomänEukaryoterEukaryotaRikeVäxterPlantaeDivisionKärlväxterTracheophytaKlassTvåhjärtbladiga blomväxterMagnoliopsidaOrdningLjungordningenEricalesFamiljLjungväxterEricace...

 

Game Boy Color (GBC) Разработчик Nintendo Research & Engineering Department[d] Производитель Nintendo Тип Портативная игровая система Поколение Пятое поколение Дата выхода 21 октября 1998 года 18 ноября 1998 года 23 ноября 1998 года 27 ноября 1998 года сентябрь 2000 года 2001 год Поддержка прекращена 23 марта 2003 года П...

 

Wappen Deutschlandkarte 50.50916666666711.138333333333830Koordinaten: 50° 31′ N, 11° 8′ O Basisdaten Bundesland: Thüringen Landkreis: Sonneberg Erfüllende Gemeinde: für Goldisthal Höhe: 830 m ü. NHN Fläche: 108,22 km2 Einwohner: 8927 (31. Dez. 2022)[1] Bevölkerungsdichte: 82 Einwohner je km2 Postleitzahl: 98724 Vorwahlen: 03679, 036701 Kfz-Kennzeichen: SON, NH Gemeindeschlüssel: 16 0 72 013 LOCODE: DE N...

Voor het Belgische marionettentheater, zie Koninklijk Poppentheater Toone. Toone Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van Toone in Tennessee Locatie van Tennessee in de VS Situering County Hardeman County Type plaats Town Staat Tennessee Coördinaten 35° 21′ NB, 88° 57′ WL Algemeen Oppervlakte 2,1 km² - land 2,1 km² - water 0,0 km² Inwoners (2006) 357 Hoogte 125 m Overig ZIP-code(s) 38381 FIPS-code 74640 Portaal    Verenigde Staten Toone i...

 

Text placed alongside its translation or translations Not to be confused with Parallel novel. The Rosetta Stone, a stele engraved with the same decree in both of the Ancient Egyptian scripts as well as Ancient Greek. Its discovery was key to deciphering the Ancient Egyptian language. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Parallel tex...

 

University in Can Tho, Vietnam This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Can Tho University – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this template message) Can Tho UniversityTrường Đại học Cần ThơEstablished1966PresidentHà Thanh ToànVice-pres...

Ukrainian far-right politician and military commander In this name that follows Eastern Slavic naming conventions, the patronymic is Yevheniyovych and the family name is Biletsky. Andriy BiletskyАндрій БілецькийBiletsky in 2017Leader of National CorpsIncumbentAssumed office 14 October 2016People's Deputy of UkraineIn office27 November 2014 – 24 July 2019Preceded byOleksandr Bryhynets [uk]Succeeded byMaryana BezuhlaConstituencyKyiv, No. 217Command...

 

French nationalist movement L'Œuvre Française PrésideurPierre Sidos (1968–2012)Yvan Benedetti (2012–2013)Founded1968; 55 years ago (1968)DissolvedJuly 23, 2013 (2013-07-23)NewspaperLe Soleil (1968–1993)Jeune Nation (1994–2013)Youth wingJeunesses NationalistesMembership (2013)400IdeologyFrench nationalismNeo-PétainismAntisemitismPolitical positionFar-rightReligionCatholic ChurchColoursBlue, White, RedPolitics of FrancePolitical partiesElections...

 

Arnaques, Crimes et Botanique Données clés Titre québécois Arnaques, Combines et Botanique Titre original Lock, Stock and Two Smoking Barrels Réalisation Guy Ritchie Scénario Guy Ritchie Musique David A. HughesJohn Murphy Acteurs principaux Nick MoranJason StathamJason FlemyngDexter Fletcher Sociétés de production Summit EntertainmentSteve Tisch CompanySKA FilmsHandMade FilmsPolygram Filmed Entertainment Pays de production Royaume-Uni Genre Comédie noire, film de gangsters Durée 107...

Australian soccer player Katarina Jukic Jukic playing for East Fremantle in 2010Personal informationDate of birth (1989-11-23) 23 November 1989 (age 34)Place of birth Perth, Western Australia, AustraliaHeight 1.63 m (5 ft 4 in)Position(s) Midfielder / StrikerYouth career FW NTCSenior career*Years Team Apps (Gls)2008–2010 Perth Glory 9 (0)2011–2012 Perth Glory 10 (2)2013–2015 Perth Glory 0 (0)2018 Queen's Park FC 2019–2021 Perth Glory 19 (1) *Club domestic league ap...

 

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Siehe Diskussionsseite. Die Korpuslinguistik ist ein Bereich der Sprachwissenschaft. Darin werden neue Erkenntnisse über Sprache generell oder über bestimmte einzelne Sprachen erlangt oder bestehende Hypothesen über...

 

2011 novel by Julie Otsuka The Buddha in the Attic First editionAuthorJulie OtsukaCountryUnited StatesLanguageEnglishPublishedAlfred A. KnopfAwardsPEN/Faulkner Award for FictionPreceded byWhen the Emperor was Divine  The Buddha in the Attic is a 2011 novel written by American author Julie Otsuka about Japanese picture brides immigrating to America in the early 1900s.[1] It is Otsuka's second novel. The novel was published in the United States in August 2011 by the publishing...

H.Dani AnwarWakil Ketua Dewan Perwakilan Rakyat Daerah Provinsi DKI JakartaMasa jabatan19 Juni 2008 – 25 Agustus 2009Menjabat bersama Ilal Ferhard dan Maringan PangaribuanPresidenSusilo Bambang YudhoyonoGubernurFauzi BowoKetuaAdi SurapriatnaPendahuluAhmad HeryawanPengganti Periode 2009–14 Triwisaksana Sayogo Hendrosubroto Inggard Joshua Abraham Lunggana Anggota Dewan Perwakilan Rakyat Daerah Provinsi DKI JakartaMasa jabatan26 Agustus 2019 – 3 Agustus 2020Pengga...

 

العلاقات الإستونية الليبيرية إستونيا ليبيريا   إستونيا   ليبيريا تعديل مصدري - تعديل   العلاقات الإستونية الليبيرية هي العلاقات الثنائية التي تجمع بين إستونيا وليبيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

American actor This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Eric Christian Olsen – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this template mess...

High school in Monmouth County, New Jersey, United States For the school in Allentown, Pennsylvania known as Allentown High School 1858–1960, see William Allen High School. Allentown High SchoolAddress27 High StreetAllentown, Monmouth County, New Jersey 08501United StatesCoordinates40°10′28″N 74°35′16″W / 40.174416°N 74.587791°W / 40.174416; -74.587791InformationTypePublic high schoolEstablished1924School districtUpper Freehold Regional School DistrictNCE...

 

  خدمة المارشالات الأمريكية خدمة المارشالات الأمريكية‌ خدمة المارشالات الأمريكية‌ الاختصار (بالإنجليزية: USMS)‏  البلد الولايات المتحدة  المقر الرئيسي مقاطعة أرلنغتون، فيرجينيا  تاريخ التأسيس 1789  المنظمة الأم وزارة العدل الأمريكية  عدد الموظفين 5116   الم...

 

Treaty of Bangkok redirects here. For other uses, see Treaty of Bangkok (disambiguation). Treaty of Southeast Asia Nuclear Weapon-Free ZoneParticipation in the Southeast Asian Nuclear-Weapon-Free Zone Treaty includes all of ASEANTypenuclear disarmamentSigned15 December 1995LocationBangkokEffectiveMarch 28, 1997Parties10 The Southeast Asian Nuclear-Weapon-Free Zone Treaty (SEANWFZ), or the Bangkok Treaty of 1995, is a nuclear weapons moratorium treaty between 10 Southeast Asian member-states u...

Anti Gas SkinSutradara Kim Gok and Kim Seon Produser Choi Doo-young Ditulis olehKim Seon[1]SkenarioKim Seon[1]PemeranPark Ji-hwan, Jang Liu, Cho Young-jin, Patrick SmithTanggal rilis 22 Agustus 2013 (2013-08-22) Durasi123 menitNegara Korea Selatan Bahasa Korea Anti Gas Skin (bahasa Korea: 방독피 RR: Bang Dok Pi) adalah film Korea Selatan tahun yang disutradara oleh saudara kembar Kim Gok and Kim Seon. Para sutradara menggambarkan Anti Gas Skin sebagai sindiran poli...

 

Plateau de Beille Top 2001 m Coördinaten 42° 44′ NB, 1° 41′ OL Locatie Pyreneeën, Frankrijk Startplaats Les Cabannes Hoogteverschil 1255 m Lengte 15.900 m Stijgings-% 7,9% Steilste km 10,8% Portaal    Wielersport Plateau de Beille is een wintersportoord in de Franse Pyreneeën. De plaats ligt in de regio Occitanie in het departement Ariège. Het wintersportstation ligt op een hoogte van 1780 meter. Ronde van Frankrijk Beklimming in 2007 Plateau de Beille is zes maal...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!