Maximal compact subgroup

In mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.

Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique.

Example

An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R). A related example is the circle group SO(2) inside SL(2, R). Evidently SO(2) inside GL(2, R) is compact and not maximal. The non-uniqueness of these examples can be seen as any inner product has an associated orthogonal group, and the essential uniqueness corresponds to the essential uniqueness of the inner product.

Definition

A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a maximal (compact subgroup) – rather than being (alternate possible reading) a maximal subgroup that happens to be compact; which would probably be called a compact (maximal subgroup), but in any case is not the intended meaning (and in fact maximal proper subgroups are not in general compact).

Existence and uniqueness

The Cartan-Iwasawa-Malcev theorem asserts that every connected Lie group (and indeed every connected locally compact group) admits maximal compact subgroups and that they are all conjugate to one another. For a semisimple Lie group uniqueness is a consequence of the Cartan fixed point theorem, which asserts that if a compact group acts by isometries on a complete simply connected negatively curved Riemannian manifold then it has a fixed point.

Maximal compact subgroups of connected Lie groups are usually not unique, but they are unique up to conjugation, meaning that given two maximal compact subgroups K and L, there is an element gG such that[1] gKg−1 = L. Hence a maximal compact subgroup is essentially unique, and people often speak of "the" maximal compact subgroup.

For the example of the general linear group GL(n, R), this corresponds to the fact that any inner product on Rn defines a (compact) orthogonal group (its isometry group) – and that it admits an orthonormal basis: the change of basis defines the conjugating element conjugating the isometry group to the classical orthogonal group O(n, R).

Proofs

For a real semisimple Lie group, Cartan's proof of the existence and uniqueness of a maximal compact subgroup can be found in Borel (1950) and Helgason (1978). Cartier (1955) and Hochschild (1965) discuss the extension to connected Lie groups and connected locally compact groups.

For semisimple groups, existence is a consequence of the existence of a compact real form of the noncompact semisimple Lie group and the corresponding Cartan decomposition. The proof of uniqueness relies on the fact that the corresponding Riemannian symmetric space G/K has negative curvature and Cartan's fixed point theorem. Mostow (1955) showed that the derivative of the exponential map at any point of G/K satisfies |d exp X| ≥ |X|. This implies that G/K is a Hadamard space, i.e. a complete metric space satisfying a weakened form of the parallelogram rule in a Euclidean space. Uniqueness can then be deduced from the Bruhat-Tits fixed point theorem. Indeed, any bounded closed set in a Hadamard space is contained in a unique smallest closed ball, the center of which is called its circumcenter. In particular a compact group acting by isometries must fix the circumcenter of each of its orbits.

Proof of uniqueness for semisimple groups

Mostow (1955) also related the general problem for semisimple groups to the case of GL(n, R). The corresponding symmetric space is the space of positive symmetric matrices. A direct proof of uniqueness relying on elementary properties of this space is given in Hilgert & Neeb (2012).

Let be a real semisimple Lie algebra with Cartan involution σ. Thus the fixed point subgroup of σ is the maximal compact subgroup K and there is an eigenspace decomposition

where , the Lie algebra of K, is the +1 eigenspace. The Cartan decomposition gives

If B is the Killing form on given by B(X,Y) = Tr (ad X)(ad Y), then

is a real inner product on . Under the adjoint representation, K is the subgroup of G that preserves this inner product.

If H is another compact subgroup of G, then averaging the inner product over H with respect to the Haar measure gives an inner product invariant under H. The operators Ad p with p in P are positive symmetric operators. This new inner produst can be written as

where S is a positive symmetric operator on such that Ad(h)tS Ad h = S for h in H (with the transposes computed with respect to the inner product). Moreover, for x in G,

So for h in H,

For X in define

If ei is an orthonormal basis of eigenvectors for S with Sei = λi ei, then

so that f is strictly positive and tends to ∞ as |X| tends to ∞. In fact this norm is equivalent to the operator norm on the symmetric operators ad X and each non-zero eigenvalue occurs with its negative, since i ad X is a skew-adjoint operator on the compact real form .

So f has a global minimum at Y say. This minimum is unique, because if Z were another then

where X in is defined by the Cartan decomposition

If fi is an orthonormal basis of eigenvectors of ad X with corresponding real eigenvalues μi, then

Since the right hand side is a positive combination of exponentials, the real-valued function g is strictly convex if X ≠ 0, so has a unique minimum. On the other hand, it has local minima at t = 0 and t = 1, hence X = 0 and p = exp Y is the unique global minimum. By construction f(x) = f(σ(h)xh−1) for h in H, so that p = σ(h)ph−1 for h in H. Hence σ(h)= php−1. Consequently, if g = exp Y/2, gHg−1 is fixed by σ and therefore lies in K.

Applications

Representation theory

Maximal compact subgroups play a basic role in the representation theory when G is not compact. In that case a maximal compact subgroup K is a compact Lie group (since a closed subgroup of a Lie group is a Lie group), for which the theory is easier.

The operations relating the representation theories of G and K are restricting representations from G to K, and inducing representations from K to G, and these are quite well understood; their theory includes that of spherical functions.

Topology

The algebraic topology of the Lie groups is also largely carried by a maximal compact subgroup K. To be precise, a connected Lie group is a topological product (though not a group theoretic product) of a maximal compact K and a Euclidean space – G = K × Rd – thus in particular K is a deformation retract of G, and is homotopy equivalent, and thus they have the same homotopy groups. Indeed, the inclusion and the deformation retraction are homotopy equivalences.

For the general linear group, this decomposition is the QR decomposition, and the deformation retraction is the Gram-Schmidt process. For a general semisimple Lie group, the decomposition is the Iwasawa decomposition of G as G = KAN in which K occurs in a product with a contractible subgroup AN.

See also

Notes

  1. ^ Note that this element g is not unique – any element in the same coset gK would do as well.

References

  • Borel, Armand (1950), Sous-groupes compacts maximaux des groupes de Lie (Exposé No. 33), Séminaire Bourbaki, vol. 1
  • Cartier, P. (1955), Structure topologique des groupes de Lie généraux (Exposé No. 22), Séminaire "Sophus Lie", vol. 1
  • Dieudonné, J. (1977), Compact Lie groups and semisimple Lie groups, Chapter XXI, Treatise on analysis, vol. 5, Academic Press, ISBN 012215505X
  • Helgason, Sigurdur (1978), Differential Geometry, Lie groups and Symmetric Spaces, Academic Press, ISBN 978-0-12-338460-7
  • Hilgert, Joachim; Neeb, Karl-Hermann (2012), Structure and geometry of Lie groups, Springer monographs in mathematics, Springer, ISBN 0387847944
  • Hochschild, G. (1965), The structure of Lie groups, Holden-Day
  • Mostow, G. D. (1955), Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc., vol. 14, pp. 31–54
  • Onishchik, A.L.; Vinberg, E.B. (1994), Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras, Encyclopaedia of Mathematical Sciences, vol. 41, Springer, ISBN 9783540546832
  • Malcev, A. (1945), "On the theory of Lie groups in the large", Mat. Sbornik, 16: 163–189
  • Iwasawa, K. (1949), "On some types of topological groups", Ann. of Math., 50: 507–558, doi:10.2307/1969548

Read other articles:

ЛідрезенLidrezing   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Дьєз Код INSEE 57401 Поштові індекси 57340 Координати 48°53′02″ пн. ш. 6°41′55″ сх. д.H G O Висота 242 - 346 м.н.р.м. Площа 10,04 км² Населення 84 (01-2020[1]) Густота 8,57 ос./км...

 

Grenzverlauf Italien Slowenien Grenzstein am Dreiländereck von Österreich, Italien und Slowenien bei Arnoldstein (Österreich) Dreiländereck/Monte Forno/Peč Predil Pass mit Restaurant Hermanov und Grenzabfertigungsgebäude, Stermitz Den Bahnhofsvorplatz teilende aktuelle Grenze zwischen Italien und Slowenien in Görz (Kreisdurchmesser auf dem Foto) Muggia Die Grenze zwischen Italien und Slowenien hat eine Länge von 218 km.[1] Ihr gegenwärtiger Verlauf wurde mit Ausnahme des...

 

Para otros usos de este término, véase San Sebastián (desambiguación). San Sebastián Coatán Municipio Cabecera municipal de San Sebastián Coatán San Sebastián CoatánLocalización de San Sebastián Coatán en Guatemala San Sebastián CoatánLocalización de San Sebastián Coatán en Huehuetenango Mapa interactivo de San Sebastián Coatán.Coordenadas 15°44′00″N 91°34′00″O / 15.73333333, -91.56666667Idioma oficial Español ChujEntidad Municipio • País...

Este artigo carece de caixa informativa ou a usada não é a mais adequada. Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Junho de 2014) A Orquestra Sinfônica Nacional Estoniana(pt-BR) ou Orquestra Sinfónica Nacional Estoniana(pt-PT?) (em estoniano: Eesti Riiklik Sümfooniaorkester) é uma orquestra base...

 

Untuk kapal lain dengan nama serupa, lihat HNLMS De Ruyter. HNLMS de Ruyter Sejarah Imperium Belanda Nama De RuyterAsal nama Michiel Adriaenszoon de RuyterPasang lunas 16 September 1933Diluncurkan 11 Maret 1935Mulai berlayar 3 Oktober 1936Nasib Terkena torpedo dan tenggelam di Laut Jawa pada 28 Februari 1942 Ciri-ciri umum Kelas dan jenis Kapal penjelajahBerat benaman 6.545 ton panjang (6.650 t) (standar)Panjang 1.709 m (5.606 ft 11 in)Lebar 157 m (515 ft 1 ...

 

American writer and academic (1860–1951) For people with similar names, see Jeannette Lee (disambiguation). Jennette LeeJennette Lee circa 1905BornNovember 10, 1860 Bristol DiedOctober 16, 1951  (aged 90)Northampton Alma materSmith College OccupationWriter, academicSpouse(s)Gerald Stanley Lee  Jennette Barbour Perry Lee (November 10, 1860 – October 10, 1951) was an American writer and academic. Born in Connecticut, she began to teach at...

British CoachwaysPreserved Plaxton bodied Volvo B58 in January 2011FoundedOctober 1980Ceased operationOctober 1982Service typeLong distance coach operatorRoutes6HubsLondonAnnual ridership750,000OperatorBarton TransportEllerman Bee LineExcelsior CoachesGrey-GreenMorris BrosPark's Motor GroupShearingsWallace ArnoldYork'sWarner Fairfax British Coachways was a consortium of independent coach operating companies in the United Kingdom. Formed immediately after the deregulation of coach services in ...

 

Александр Іностранцев Народився 12 (24) липня 1843Санкт-Петербург, Російська імперія[1]Помер 31 грудня 1919(1919-12-31)[1] (76 років)Петроград, Російська СФРР[1]Поховання Смоленський лютеранський цвинтарd :  Країна  Російська імперія Російська республіка Росій...

 

Officer of the British Royal Navy (1762–1833) James YoungBorn1762 (1762)Died8 March 1833 (aged 70–71)Barton End House, GloucestershireAllegianceUnited Kingdom of Great Britain and IrelandService/branchRoyal NavyYears of service– 1833RankVice-Admiral of the WhiteCommands heldHMS CometHMS ZealousHMS GreyhoundHMS UnicornHMS EthalionHMS PiqueHMS ValiantBattles/wars French Revolutionary Wars Napoleonic Wars Battle of Copenhagen RelationsJ...

Khagan of the Mongols Engke恩克 ᠡᠩᠬᠡKhagan of the MongolsKhagan of the Northern Yuan dynastyReign1391–1394Coronation1388PredecessorJorightu Khan YesüderSuccessorElbeg Nigülesügchi KhanDied1394HouseBorjiginDynastyNorthern Yuan Engke (Mongolian: Энх ᠡᠩᠬᠡ; Chinese: 恩克), (?–1394) was a khagan of the Northern Yuan dynasty, reigning for a brief period from 1391 to 1394.[1] The identity of Engke is the subject of an academic dispute: according to Persian h...

 

Coty in 1954 René Jules Gustave Coty (Le Havre, 20 maart 1882 – aldaar, 22 november 1962) was een Frans politicus die als tweede en laatste president van Frankrijk onder de Vierde Republiek van 4 oktober 1954 tot en met 8 januari 1959 diende. Presidentschap Pas na dertien stemronden werd Coty door de beide kamers van het parlement gekozen. Hieruit bleek wel de crisis waarin de Vierde Republiek zich bevond. President Coty, tweede van rechts tijdens de Prytanée National Militaire René Coty...

 

One of Port Pirie's six railway stations, in operation from 1967 to 1989 Port Pirie railway station (Mary Elie Street)(1967–1989)Budd railcar CB2 and a luggage van waiting on the Commonwealth Railways (standard gauge) side of the Mary Elie Street platform, about half-way along its 700-metre (770-yard) length, about 1969. Broad-gauge South Australian Railways trains arrive on the other side. General informationLocationEntrance 3 Mary Elie Street, Port Pirie, South Australia; parallel to Wand...

Indian actress (born 1990) Sreejita DeDe in 2023Born (1990-07-16) 16 July 1990 (age 33)Haldia, West BengalOccupationsActressmodelYears active2007–presentKnown forUttaranBigg Boss 16Spouse Michael Blohm-Pape ​(m. 2023)​ Sreejita De Blohm-Pape (née De; born 16 July 1990)[1] is an Indian actress and model who works in Hindi television. She is best known for portraying Mukta Rathore in Colors TV's serial Uttaran[2] which ranks among t...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SchaerbeekSchaarbeek Stasiun kereta apiLokasiPlace Princesse Elisabeth / Prinses-Elisabethplein, SchaerbeekKoordinat50°52′41″N 4°22′46″E / 50.87806°N 4.37944°E / 50.87806; 4.37944Koordinat: 50°52′41″N 4°22′4...

 

This article may be written in a style that is too abstract to be readily understandable by general audiences. Please improve it by defining technical terminology, and by adding examples. (March 2018) Rydberg ionization spectroscopy is a spectroscopy technique in which multiple photons are absorbed by an atom causing the removal of an electron to form an ion.[1] Resonance ionization spectroscopy The ionization threshold energy of atoms and small molecules are typically larger than the...

Volta Lugar designado por el censo VoltaUbicación en el condado de Merced en California Ubicación de California en EE. UU.Coordenadas 37°05′51″N 120°55′34″O / 37.0975, -120.92611111111Entidad Lugar designado por el censo • País Estados Unidos • Estado  California • Condado MercedFundación 31 de marzo de 2010Superficie   • Total 11,48 km² Altitud   • Media 35 m s. n. m.Población (2010)   ...

 

Johann Christian Fabricius Johann Christian Fabricius (Tønder, 7 gennaio 1745 – Copenaghen, 3 marzo 1808) è stato un entomologo, botanico, medico e aracnologo danese. Indice 1 Biografia 2 Taxa descritti 3 Taxa denominati in suo onore 4 Opere e pubblicazioni 5 Note 6 Altri progetti 7 Collegamenti esterni Biografia Figlio di un medico, dopo aver iniziato gli studi di medicina alle Università di Altona e di Copenaghen, nel 1762 si trasferì a Uppsala, dove ebbe per maestro Linneo. Si laure...

 

Japanese politician Takeshi Maeda前田 武志House of CouncillorsIn office2004–2016 Personal detailsBorn (1937-10-22) October 22, 1937 (age 86)Alma materKyoto University Takeshi Maeda (前田 武志, Maeda Takeshi, born October 22, 1937) is a Japanese politician of the Democratic Party of Japan, a former member of the House of Councillors in the Diet (national legislature). A native of Yoshino District, Nara, he graduated from Kyoto University and received a master's degree from it. A...

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (May 2023) (Learn how and when to remove this template message) Fortified complex above Bard, Aosta Valley, Italy Fort BardPart of Aosta ValleyBard Coordinates45°36′30″N 7°44′41″E / 45.60833°N 7.74472°E / 45.60833; 7.74472Type19th-century r...

 

Lucio Papirio CrassoConsole e Dittatore della Repubblica romanaNome originaleLucius Papirius Crassus GensPapiria Consolato336 a.C., 330 a.C. Dittatura340 a.C. Lucio Papirio Crasso (... – ...; fl. IV secolo a.C.) è stato un politico romano. Indice 1 Biografia 2 Note 3 Voci correlate 4 Collegamenti esterni Biografia Fu nominato dittatore nel 340 a.C. da Tito Manlio Imperioso Torquato[1], rientrato a Roma malato dopo aver sconfitto i Latini nella battaglia di Trifano, perché con...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!