The virus can be transmitted by exposure to one species of fruit bats or it can be transmitted between people via body fluids through unprotected sex and broken skin. The disease can cause haemorrhage, fever, and other symptoms similar to Ebola, which belongs to the same family of viruses. According to the WHO, there are no approved vaccines or antiviral treatment for Marburg, but early, professional treatment of symptoms like dehydration considerably increases survival chances.[7]
Marburg virus was first described in 1967.[12] It was discovered that year during a set of outbreaks of Marburg virus disease in the German cities of Marburg and Frankfurt and the Yugoslav capital Belgrade. Laboratory workers were exposed to tissues of infected grivet monkeys (the African green monkey, Chlorocebus aethiops) at the Behringwerke [de], a major industrial plant in Marburg which was then part of Hoechst, and later part of CSL Behring. During the outbreaks, thirty-one people became infected and seven of them died.[13]
Nomenclature
The virus is one of two members of the species Marburgvirus, which is included in the genus Marburgvirus, family Filoviridae, and order Mononegavirales. The name Marburgvirus is derived from Marburg (the city in Hesse, Germany, where the virus was first discovered) and the taxonomic suffix virus.[1]
Marburgvirus was first introduced under this name in 1967.[12] The virus name was changed to Lake Victoria marburgvirus in 2005, confusingly making the only difference in distinguishing between a Marburgvirus organism and its species as a whole italicization, as in Lake Victoria marburgvirus.[14][15][16] Still, most scientific articles continued to use the name Marburgvirus. Consequently, in 2010, the name Marburgvirus was reinstated and the species name changed.[1]
Virology
Genome
Like all mononegaviruses, marburg virions contain non-infectious, linear nonsegmented, single-stranded RNAgenomes of negative polarity that possess inverse-complementary 3' and 5' termini, do not possess a 5' cap, are not polyadenylated, and are not covalently linked to a protein.[17] Marburgvirus genomes are approximately 19 kbp long and contain seven genes in the order 3'-UTR-NP-VP35-VP40-GP-VP30-VP24-L-5'-UTR.[18]
Structure
Like all filoviruses, marburgvirions are filamentous particles that may appear in the shape of a shepherd's crook or in the shape of a "U" or a "6", and they may be coiled, toroid, or branched.[18] Marburgvirions are generally 80 nm in width, but vary somewhat in length. In general, the median particle length of marburgviruses ranges from 795 to 828 nm (in contrast to ebolavirions, whose median particle length was measured to be 974–1,086 nm), but particles as long as 14,000 nm have been detected in tissue culture.[19]
Marburgvirions consist of seven structural proteins. At the center is the helicalribonucleocapsid, which consists of the genomic RNA wrapped around a polymer of nucleoproteins (NP). Associated with the ribonucleoprotein is the RNA-dependent RNA polymerase (L) with the polymerase cofactor (VP35) and a transcription activator (VP30). The ribonucleoprotein is embedded in a matrix, formed by the major (VP40) and minor (VP24) matrix proteins. These particles are surrounded by a lipid membrane derived from the host cell membrane. The membrane anchors a glycoprotein (GP1,2) that projects 7 to 10 nm spikes away from its surface. While nearly identical to ebolavirions in structure, marburgvirions are antigenically distinct.[20]
Entry
Niemann–Pick C1 (NPC1) cholesterol transporter protein appears to be essential for infection with both Ebola and Marburg virus. Two independent studies reported in the same issue of Nature showed that Ebola virus cell entry and replication requires NPC1.[21][22] When cells from patients lacking NPC1 were exposed to Ebola virus in the laboratory, the cells survived and appeared immune to the virus, further indicating that Ebola relies on NPC1 to enter cells. This might imply that genetic mutations in the NPC1 gene in humans could make some people resistant to one of the deadliest known viruses affecting humans. The same studies described similar results with Marburg virus, showing that it also needs NPC1 to enter cells.[21][22] Furthermore, NPC1 was shown to be critical to filovirus entry because it mediates infection by binding directly to the viral envelope glycoprotein[22] and that the second lysosomal domain of NPC1 mediates this binding.[23]
In one of the original studies, a small molecule was shown to inhibit Ebola virus infection by preventing the virus glycoprotein from binding to NPC1.[22][24] In the other study, mice that were heterozygous for NPC1 were shown to be protected from lethal challenge with mouse-adapted Ebola virus.[21]
Replication
The Marburg virus life cycle begins with virion attachment to specific cell-surface receptors, followed by fusion of the virion envelope with cellular membranes and the concomitant release of the virus nucleocapsid into the cytosol.[citation needed]
The virus RdRp partially uncoats the nucleocapsid and transcribes the genes into positive-stranded mRNAs, which are then translated into structural and nonstructural proteins. Marburgvirus L binds to a single promoter located at the 3' end of the genome. Transcription either terminates after a gene or continues to the next gene downstream. This means that genes close to the 3' end of the genome are transcribed in the greatest abundance, whereas those toward the 5' end are least likely to be transcribed. The gene order is therefore a simple but effective form of transcriptional regulation.[25]
The most abundant protein produced is the nucleoprotein, whose concentration in the cell determines when L switches from gene transcription to genome replication. Replication results in full-length, positive-stranded antigenomes that are in turn transcribed into negative-stranded virus progeny genome copies. Newly synthesized structural proteins and genomes self-assemble and accumulate near the inside of the cell membrane. Virions bud off from the cell, gaining their envelopes from the cellular membrane they bud from. The mature progeny particles then infect other cells to repeat the cycle.[14]
Ecology
In 2009, the successful isolation of infectious MARV was reported from caught healthy Egyptian fruit bats (Rousettus aegyptiacus).[26] This isolation, together with the isolation of infectious RAVV,[26] strongly suggests that Old World fruit bats are involved in the natural maintenance of marburgviruses. Further studies are necessary to establish whether Egyptian rousettes are the actual hosts of MARV and RAVV or whether they get infected via contact with another animal and therefore serve only as intermediate hosts. In 2012 the first experimental infection study of Rousettus aegyptiacus with MARV provided further insight into the possible involvement of these bats in MARV ecology.[27]
Experimentally infected bats developed relatively low viremia lasting at least five days, but remained healthy and did not develop any notable gross pathology. The virus also replicated to high titers in major organs (liver and spleen), and organs that might possibly be involved in virus transmission (lung, intestine, reproductive organs, salivary gland, kidney, bladder, and mammary gland). The relatively long period of viremia noted in this experiment could possibly also facilitate mechanical transmission by blood sucking arthropods in addition to infection of susceptible vertebrate hosts by direct contact with infected blood.[27]
Evolution
The viral strains fall into two clades: Ravn virus and Marburg virus.[28] The Marburg strains can be divided into two: A and B. The A strains were isolated from Uganda (five from 1967), Kenya (1980) and Angola (2004–2005) while the B strains were from the Democratic Republic of the Congo epidemic (1999–2000) and a group of Ugandan isolates isolated in 2007–2009.[25]
The mean evolutionary rate of the whole genome was 3.3 × 10−4 substitutions/site/year (credibility interval 2.0–4.8). The Marburg strains had a mean root time of the most recent common ancestor of 177.9 years ago (95% highest posterior density 87–284) suggesting an origin in the mid 19th century. In contrast, the Ravn strains origin dated back to a mean 33.8 years ago (the early 1980s). The most probable location of the Marburg virus ancestor was Uganda whereas that of the RAVV ancestor was Kenya.[citation needed]
MARV is one of two Marburg viruses that causes Marburg virus disease (MVD) in humans (in the literature also often referred to as Marburg hemorrhagic fever, MHF). The other one is Ravn virus (RAVV). Both viruses fulfill the criteria for being a member of the species Marburg marburgvirus because their genomes diverge from the prototype Marburg marburgvirus or the Marburg virus variant Musoke (MARV/Mus) by <10% at the nucleotide level.[1]
Two different marburgviruses, MARV and Ravn virus (RAVV), cocirculated and caused disease. The number of cases and deaths due to MARV or RAVV infection have not been reported.[45][46][47]
The Guinean government detected the case from a sample of patients who died on August 2, 2021, in the southern prefecture of Gueckedou near the country's borders with Sierra Leone and Liberia.[61][62][63]
Four cases have been reported so far with preparations for a possible outbreak being made. On 17 July 2022, two cases were confirmed by Ghana,[64] with two more being subsequently confirmed on 27 July 2022.[65]
As with many similar virusses, viral transmission can be reduced by taking suitable infection prevention and control measures, such as cleaning, isolation, protective clothing, safe waste disposal, and safe funeral practices for those killed by the disease.
The first clinical study testing the efficacy of a Marburg virus vaccine was conducted in 2014. The study tested a DNA vaccine and concluded that individuals inoculated with the vaccine exhibited some level of antibodies. However, these vaccines were not expected to provide definitive immunity.[71] Several animal models have shown to be effective in the research of Marburg virus, such as hamsters, mice, and non-human primates (NHPs). Mice are useful in the initial phases of vaccine development as they are ample models for mammalian disease, but their immune systems are still different enough from humans to warrant trials with other mammals.[72] Of these models, the infection in macaques seems to be the most similar to the effects in humans.[73] A variety of other vaccines have been considered. Virus replicon particles (VRPs) were shown to be effective in guinea pigs, but lost efficacy once tested on NHPs. Additionally, an inactivated virus vaccine proved ineffective. DNA vaccines showed some efficacy in NHPs, but all inoculated individuals showed signs of infection.[74]
Because Marburg virus and Ebola virus belong to the same family, Filoviridae, some scientists have attempted to create a single-injection vaccine for both viruses. This would both make the vaccine more practical and lower the cost for developing countries.[75] Using a single-injection vaccine has shown to not cause any adverse reactogenicity, which the possible immune response to vaccination, in comparison to two separate vaccinations.[71]
There is a candidate vaccine against the Marburg virus called rVSV-MARV. It was developed alongside vaccines for closely-related Ebolaviruses by the Canadian government in the early 2000s, twenty years before the outbreak. Production and testing of rVSV-MARV is blocked by legal monopolies held by the Merck Group. Merck acquired rights to all the closely-related candidate vaccines in 2014, but declined to work on most of them, including the Marburg vaccine, for economic reasons. While Merck returned the rights to the abandoned vaccines to the Public Health Agency of Canada, the vital rVSV vaccine production techniques which Merck had gained (while bringing the closely-related rVSV-ZEBOV vaccine into commercial use in 2019, with GAVI funding) remain Merck's, and cannot be used by anyone else wishing to develop a rVSV vaccine.[76][77][78][79]
As of June 23, 2022, researchers working with the Public Health Agency of Canada conducted a study which showed promising results of a recombinant vesicular stomatitis virus (rVSV) vaccine in guinea pigs, entitled PHV01. According to the study, inoculation with the vaccine approximately one month prior to infection with the virus provided a high level of protection.[80]
Even though there is much experimental research on Marburg virus, there is still no prominent vaccine. Human vaccination trials are either ultimately unsuccessful or are missing data specifically regarding Marburg virus.[81] Due to the cost needed to handle Marburg virus at qualified facilities, the relatively few number of fatalities, and lack of commercial interest, the possibility of a vaccine has simply not come to fruition[82] (see also economics of vaccines).
As most performed research was highly classified, it remains unclear how successful the MARV program was. However, Soviet defectorKen Alibek claimed that a weapon filled with MARV was tested at the Stepnogorsk Scientific Experimental and Production Base in Stepnogorsk, Kazakh Soviet Socialist Republic (today Kazakhstan),[83] suggesting that the development of a MARV biological weapon had reached advanced stages. Independent confirmation for this claim is lacking. At least one laboratory accident with MARV, resulting in the death of Koltsovo researcher Nikolai Ustinov, occurred during the Cold War in the Soviet Union and was first described in detail by Alibek.[83]
^ abcSiegert R, Shu HL, Slenczka W, Peters D, Müller G (December 1967). "[On the etiology of an unknown human infection originating from monkeys]". Deutsche Medizinische Wochenschrift. 92 (51): 2341–2343. doi:10.1055/s-0028-1106144. PMID4294540. S2CID116556454.
^ abFeldmann H, Geisbert TW, Jahrling PB, Klenk H, Netesov SV, Peters CJ, et al. (2005). "Family Filoviridae". In Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds.). Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, US: Elsevier/Academic Press. pp. 645–653. ISBN978-0-12-370200-5.
^Pringle CR (2005). "Order Mononegavirales". In Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds.). Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, US: Elsevier/Academic Press. pp. 609–614. ISBN978-0-12-370200-5.
^Stille W, Böhle E, Helm E, van Rey W, Siede W (March 1968). "[On an infectious disease transmitted by Cercopithecus aethiops. ("Green monkey disease")]". Deutsche Medizinische Wochenschrift. 93 (12): 572–582. doi:10.1055/s-0028-1105099. PMID4966281. S2CID260058558.
^Bonin O (May 1969). "The Cercopithecus monkey disease in Marburg and Frankfurt (Main), 1967". Acta Zoologica et Pathologica Antverpiensia. 48: 319–331. PMID5005859.
^Jacob H, Solcher H (July 1968). "[An infectious disease transmitted by Cercopithecus aethiops ("marbury disease") with glial nodule encephalitis]". Acta Neuropathologica. 11 (1): 29–44. doi:10.1007/bf00692793. PMID5748997. S2CID12791113.
^Gear JH (March 1977). "Haemorrhagic fevers of Africa: an account of two recent outbreaks". Journal of the South African Veterinary Association. 48 (1): 5–8. PMID406394.
^Conrad JL, Isaacson M, Smith EB, Wulff H, Crees M, Geldenhuys P, Johnston J (November 1978). "Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975". The American Journal of Tropical Medicine and Hygiene. 27 (6): 1210–1215. doi:10.4269/ajtmh.1978.27.1210. PMID569445.
^Nikiforov VV, Turovskiĭ I, Kalinin PP, Akinfeeva LA, Katkova LR, Barmin VS, et al. (1994). "[A case of a laboratory infection with Marburg fever]". Zhurnal Mikrobiologii, Epidemiologii I Immunobiologii (3): 104–106. PMID7941853.
^Bertherat E, Talarmin A, Zeller H (1999). "[Democratic Republic of the Congo: between civil war and the Marburg virus. International Committee of Technical and Scientific Coordination of the Durba Epidemic]". Médecine Tropicale. 59 (2): 201–204. PMID10546197.
^Roddy P, Marchiol A, Jeffs B, Palma PP, Bernal O, de la Rosa O, Borchert M (February 2009). "Decreased peripheral health service utilisation during an outbreak of Marburg haemorrhagic fever, Uíge, Angola, 2005". Transactions of the Royal Society of Tropical Medicine and Hygiene. 103 (2): 200–202. doi:10.1016/j.trstmh.2008.09.001. hdl:10144/41786. PMID18838150.
^"MSF's response to CEPI's policy regarding equitable access". Médecins Sans Frontières Access Campaign. September 25, 2018. Archived from the original on March 21, 2021. Retrieved April 10, 2020. In vaccine development, access to know how is important. Knowledge and expertise including but not limited to purification techniques, cell lines, materials, software codes and their transfer of this to alternative manufacturers in the event the awardee discontinues development of a promising vaccine is critically important. The recent example of Merck abandoning the development of rVSV vaccines for Marburg (rVSV-MARV) and for Sudan-Ebola (rVSV-SUDV) is a case in point. Merck continues to retain vital know-how on the rVSV platform as it developed the rVSV vaccine for Zaire-Ebola (rVSV-ZEBOV) with funding support from GAVI. While it has transferred the rights on these vaccines back to Public Health Agency of Canada, there is no mechanism to share know how on the rVSV platform with other vaccine developers who would like to also use rVSV as a vector against other pathogens.
^US Animal and Plant Health Inspection Service (APHIS) and US Centers for Disease Control and Prevention (CDC). "National Select Agent Registry (NSAR)". Retrieved 2011-10-16.
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2023) زوفيا كوفات زوفيا كوفات في بطولة أوروبا 2022 معلومات شخصية الميلاد 6 أبريل 2000 (العمر 23 سنة)دوناوجفاروس الطول 1.57 m الجنسية المجر نشأت في دوناويفاروش الوزن 48...
Sheer, lightweight crepe fabric made from silk or manufactured fibres Georgette (from crêpe Georgette) is a sheer, lightweight, dull-finished crêpe fabric named after the early 20th century French dressmaker Georgette de la Plante.[1][2] Originally made from silk, Georgette is made with highly twisted yarns. Its characteristic crinkly surface is created by alternating S- and Z-twist yarns in both warp and weft.[1][3] Georgette is made in solid colors and prin...
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Novembro de 2023) TurboCiclo de funcionamento de um turbocompressor em um motor de quatro cilindros em linha.Tipo supercompressorforced induction (en)editar - editar código-fonte - editar Wikidata Turbocompressor, também conhecido c...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2018) كتاب منهج الطالبين وبلاغ الراغبين لمؤلفه الفقيه العلامة ال
Bupati GowaPetahanaAdnan Purichta Ichsan, S.H., M.H.sejak 26 Februari 2021KediamanRumah Jabatan BupatiMasa jabatan5 tahunDibentuk1957Pejabat pertamaAndi Ijo Karaeng Lalolang Berikut ini adalah daftar bupati Gowa yang menjabat sejak pembentukannya pada tahun 1957. No Bupati Mulai menjabat Akhir menjabat Prd. Ket. Wakil Bupati 1 Andi Ijo Karaeng Lalolang 1957 1960 1 [1] – 2 Andi Tau 1960 1967 2 3 K.S. Mas'ud 1967 1976 3 4 H. M. Arief Sirajuddin 1976 1984 4 5 A. Kadir Dalle 1984 1...
For the 1964 Jerry Lee Lewis album, see Live at the Star Club, Hamburg. 1977 live album by the BeatlesLive! at the Star-Club in Hamburg, Germany; 1962Live album by the BeatlesReleased8 April 1977 (1977-04-08)RecordedLate December 1962VenueStar-Club, Hamburg, West GermanyGenreRock and rollLength60:01[1]LabelLingasong/Bellaphon (GER)ProducerLarry GrossbergThe Beatles chronology The Beatles at the Hollywood Bowl(1977) Live! at the Star-Club in Hamburg, Germany; 196...
Вірменія. Зангезурський мідно-молібденовий комбінат у 70-ті роки XX ст. На передньому плані 90-метрова опора канатної дороги, яка транспортує руду з кар'єру на збагачувальну фабрику. Історія освоєння мінеральних ресурсів Вірменії Зміст 1 Від давніх часів до ХІХ століття 2 ХХ -
Chicago-based taxicab company (1907–2015) Yellow Cab CompanyTypeSubsidiaryFounded1907; 116 years ago (1907)FounderJohn D. HertzDefunct2015 (2015)FateSplit into multiple companies upon bankruptcyOwnerChicago Yellow Cab Company (1925–1929)Morris Markin (1929–1996)Patton Corrigan (1996–2005)Michael Levine (2005–2015) Chicago yellow cab The Yellow Cab Company was a taxicab company in Chicago which was founded in 1907 by John D. Hertz.[1] In...
Robert H. DietzLahir(1921-01-22)22 Januari 1921Kingston, New YorkMeninggal29 Maret 1945(1945-03-29) (umur 24)Kirchain, JermanTempat pemakamanWiltwyck Cemetery, Kingston, New YorkPengabdian Amerika SerikatDinas/cabang Angkatan Darat Amerika SerikatLama dinas1942–1945Pangkat Sersan StafKesatuan38th Armored Infantry Battalion, 7th Armored DivisionPerang/pertempuranPerang Dunia IIPenghargaanMedal of HonorHubunganDorothy M. Dietz Durling (saudari) Robert H. Dietz (22 Januari 1921&...
Metropolitan area in Virginia, United States Location of the Roanoke Metropolitan Statistical Area in Virginia The Roanoke Metropolitan Statistical Area is a Metropolitan Statistical Area (MSA) in Virginia as defined by the United States Office of Management and Budget (OMB). The Roanoke MSA is sometimes referred to as the Roanoke Valley, even though the Roanoke MSA occupies a larger area than the Roanoke Valley. It is geographically similar to the area known as the Roanoke Region of Virginia...
American professional wrestler This article is about the professional wrestler. For other people with the same name, see James Ellsworth. James EllsworthEllsworth in May 2018Birth nameJames Ellsworth Morris[1]Born (1984-12-11) December 11, 1984 (age 38)[2]Baltimore, Maryland, U.S.[2]Children2Professional wrestling careerRing name(s)James Ellsworth[3][2]Jimmy Dream[2]Billed height5 ft 9 in (1.75 m)[3]Billed weight176 l...
Icelandic geologist, writer This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2021) (Learn how and when to remove this template message) This article relies excessively on references to primary sources. ...
Hindu temple in Andhra Pradesh, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Venkateswara Temple, Tirumala – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this template message) Venkateswara TempleReligionAffiliationHinduismDistrictTirupatiDeityVenkateswar...
Railway station in Tsuru, Yamanashi Prefecture, Japan Kasei Station禾生駅Kasei Station, June 2009General informationLocation524–3 Furukawado, Tsuru-shi, Yamanashi-kenJapanCoordinates35°34′30″N 138°55′45″E / 35.57500°N 138.92917°E / 35.57500; 138.92917Elevation710 metersOperated by Fuji KyukoLine(s)■ Fujikyuko LineDistance5.6 km from ŌtsukiPlatforms1 side platformTracks1Other informationStatusUnstaffedStation codeFJ04WebsiteOfficial websiteHisto...
Swiss breed of goat Valais BlackneckConservation statusFAO (2007): Italy: critical[1]other countries: not listedOther namesWalliser SchwarzhalsziegeGletschergeissCol Noir du ValaisChèvre des GlaciersRace de ViègeVallesanaValleseCountry of originSwitzerland[2]Austria[3]Germany[4]Italy[5]Distributionmainly in the ValaisStandardOZIV (Switzerland)MIPAAF (Italy)Usemeat, milk, vegetation managementTraitsWeightMale: minimum 75 kg[6]Female: minimum 55...
This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (May 2014) (Learn how and when to remove this template message) First edition coverAuthorTao LinCover artistCardon Webb (design)CountryUnited StatesLanguageEnglishSeriesVintage ContemporariesGenreFiction, novelPublishedJune 4, 2013, Vintage BooksPages248ISBN978...
National road cycling championship in Canada Svein Tuft The champion's jersey Governed by Cycling Canada, the Canadian National Time Trial Championship is a road bicycle race that takes place inside the Canadian National Cycling Championship, and decides the best cyclist in this type of race. Svein Tuft is the all-time Canadian record holder for the most wins in the event with 11 wins. The women's record is held by Clara Hughes with 5 national titles. The current elite champions of the race a...
United States historic placeColby-Petersen FarmU.S. National Register of Historic Places Show map of IllinoisShow map of the United StatesLocation4112 McCullom Lake Rd.McHenry, IllinoisCoordinates42°21′44″N 88°16′41″W / 42.36222°N 88.27806°W / 42.36222; -88.27806Builtc. 1850Architectural styleGreek RevivalNRHP reference No.100004853[1]Added to NRHPMarch 13, 2020 The Colby-Petersen Farm is a historic farm at 4112 McCullom Lake Road in ...