This article is about the mesh smoothing algorithm. For the multinomial shrinkage estimator, also called Laplace smoothing or add-one smoothing, see additive smoothing.
Laplacian smoothing is an algorithm to smooth a polygonal mesh.[1][2] For each vertex in a mesh, a new position is chosen based on local information (such as the position of neighbours) and the vertex is moved there. In the case that a mesh is topologically a rectangular grid (that is, each internal vertex is connected to four neighbours) then this operation produces the Laplacian of the mesh.
More formally, the smoothing operation may be described per-vertex as:
Where is the number of adjacent vertices to node , is the position of the -th adjacent vertex and is the new position for node .[3]
See also
Tutte embedding, an embedding of a planar mesh in which each vertex is already at the average of its neighbours' positions
References
^Herrmann, Leonard R. (1976), "Laplacian-isoparametric grid generation scheme", Journal of the Engineering Mechanics Division, 102 (5): 749–756, doi:10.1061/JMCEA3.0002158.