Ruppert's algorithm is often used to convert an irregularly shaped polygon into an unstructured grid of triangles.
In addition to triangles and tetrahedra, other commonly used elements in finite element simulation include quadrilateral (4-noded) and hexahedral (8-noded) elements in 2D and 3D, respectively. One of the most commonly used algorithms to generate unstructured quadrilateral grid is "Paving".[1] However, there is no such commonly used algorithm for generating unstructured hexahedral grid on a general 3D solid model. "Plastering" is a 3D version of Paving,[2] but it has difficulty in forming hexahedral elements at the interior of a solid.
See also
Gridding – Interpolation on functions of more than one variablePages displaying short descriptions of redirect targets
Finite element analysis – Numerical method for solving physical or engineering problemsPages displaying short descriptions of redirect targets
References
^Blacker, Ted D.; Stephenson, Michael B. (September 1991). "Paving: A new approach to automated quadrilateral mesh generation". International Journal for Numerical Methods in Engineering. 32 (4): 811–847. doi:10.1002/nme.1620320410.
^Canann, Scott (April 1992). "Plastering – A new approach to automated, 3-D hexahedral mesh generation". 33rd Structures, Structural Dynamics and Materials Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.1992-2416.