Klein–Kramers equation

In physics and mathematics, the KleinKramers equation or sometimes referred as Kramers–Chandrasekhar equation[1] is a partial differential equation that describes the probability density function f (r, p, t) of a Brownian particle in phase space (r, p).[2][3] It is a special case of the Fokker–Planck equation.

In one spatial dimension, f is a function of three independent variables: the scalars x, p, and t. In this case, the Klein–Kramers equation is where V(x) is the external potential, m is the particle mass, ξ is the friction (drag) coefficient, T is the temperature, and kB is the Boltzmann constant. In d spatial dimensions, the equation is Here and are the gradient operator with respect to r and p, and is the Laplacian with respect to p.

The fractional Klein-Kramers equation is a generalization that incorporates anomalous diffusion by way of fractional calculus.[4]

Physical basis

The physical model underlying the Klein–Kramers equation is that of an underdamped Brownian particle.[3] Unlike standard Brownian motion, which is overdamped, underdamped Brownian motion takes the friction to be finite, in which case the momentum remains an independent degree of freedom.

Mathematically, a particle's state is described by its position r and momentum p, which evolve in time according to the Langevin equations Here is d-dimensional Gaussian white noise, which models the thermal fluctuations of p in a background medium of temperature T. These equations are analogous to Newton's second law of motion, but due to the noise term are stochastic ("random") rather than deterministic.

The dynamics can also be described in terms of a probability density function f (r, p, t), which gives the probability, at time t, of finding a particle at position r and with momentum p. By averaging over the stochastic trajectories from the Langevin equations, f (r, p, t) can be shown to obey the Klein–Kramers equation.

Solution in free space

The d-dimensional free-space problem sets the force equal to zero, and considers solutions on that decay to 0 at infinity, i.e., f (r, p, t) → 0 as |r| → ∞.

For the 1D free-space problem with point-source initial condition, f (x, p, 0) = δ(x - x')δ(p - p'), the solution which is a bivariate Gaussian in x and p was solved by Subrahmanyan Chandrasekhar (who also devised a general methodology to solve problems in the presence of a potential) in 1943:[3][5] where This special solution is also known as the Green's function G(x, x', p, p', t), and can be used to construct the general solution, i.e., the solution for generic initial conditions f (x, p, 0): Similarly, the 3D free-space problem with point-source initial condition f (r, p, 0) = δ(r - r') δ(p - p') has solution with , , and and defined as in the 1D solution.[5]

Asymptotic behavior

Under certain conditions, the solution of the free-space Klein–Kramers equation behaves asymptotically like a diffusion process. For example, if then the density satisfies where is the free-space Green's function for the diffusion equation.[6]

Solution near boundaries

The 1D, time-independent, force-free (F = 0) version of the Klein–Kramers equation can be solved on a semi-infinite or bounded domain by separation of variables. The solution typically develops a boundary layer that varies rapidly in space and is non-analytic at the boundary itself.

A well-posed problem prescribes boundary data on only half of the p domain: the positive half (p > 0) at the left boundary and the negative half (p < 0) at the right.[7] For a semi-infinite problem defined on 0 < x < ∞, boundary conditions may be given as: for some function g(p).

For a point-source boundary condition, the solution has an exact expression in terms of infinite sum and products:[8][9] Here, the result is stated for the non-dimensional version of the Klein–Kramers equation: In this representation, length and time are measured in units of and , such that and are both dimensionless. If the boundary condition at z = 0 is g(w) = δ(w - w0), where w0 > 0, then the solution is where This result can be obtained by the Wiener–Hopf method. However, practical use of the expression is limited by slow convergence of the series, particularly for values of w close to 0.[10]

See also

References

  1. ^ http://www.damtp.cam.ac.uk/user/tong/kintheory/three.pdf. {{cite web}}: Missing or empty |title= (help)
  2. ^ Kramers, H.A. (1940). "Brownian motion in a field of force and the diffusion model of chemical reactions". Physica. 7 (4). Elsevier BV: 284–304. Bibcode:1940Phy.....7..284K. doi:10.1016/s0031-8914(40)90098-2. ISSN 0031-8914. S2CID 33337019.
  3. ^ a b c Risken, H. (1989). The Fokker–Planck Equation: Method of Solution and Applications. New York: Springer-Verlag. ISBN 978-0387504988.
  4. ^ Metzler, Ralf; Klafter, Joseph (22 July 2004). "The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics". Journal of Physics A: Mathematical and General. 37 (31): R161 – R208. doi:10.1088/0305-4470/37/31/R01. eISSN 1361-6447. ISSN 0305-4470.
  5. ^ a b Chandrasekhar, S. (1943). "Stochastic Problems in Physics and Astronomy". Reviews of Modern Physics. 15 (1): 1–89. Bibcode:1943RvMP...15....1C. doi:10.1103/RevModPhys.15.1. ISSN 0034-6861.
  6. ^ Ganapol, B. D.; Larsen, Edward W. (January 1984). "Asymptotic equivalence of Fokker-Planck and diffusion solutions for large time". Transport Theory and Statistical Physics. 13 (5): 635–641. Bibcode:1984TTSP...13..635G. doi:10.1080/00411458408211662. eISSN 1532-2424. ISSN 0041-1450.
  7. ^ Beals, R.; Protopopescu, V. (September 1983). "Half-range completeness for the Fokker-Planck equation". Journal of Statistical Physics. 32 (3): 565–584. Bibcode:1983JSP....32..565B. doi:10.1007/BF01008957. eISSN 1572-9613. ISSN 0022-4715. S2CID 121020903.
  8. ^ Marshall, T W; Watson, E J (1985). "A drop of ink falls from my pen. . . it comes to earth, I know not when". Journal of Physics A: Mathematical and General. 18 (18): 3531–3559. Bibcode:1985JPhA...18.3531M. doi:10.1088/0305-4470/18/18/016. ISSN 0305-4470.
  9. ^ Marshall, T W; Watson, E J (1987). "The analytic solutions of some boundary layer problems in the theory of Brownian motion". Journal of Physics A: Mathematical and General. 20 (6): 1345–1354. Bibcode:1987JPhA...20.1345M. doi:10.1088/0305-4470/20/6/018. ISSN 0305-4470.
  10. ^ Kainz, A J; Titulaer, U M (7 October 1991). "The analytic structure of the stationary kinetic boundary layer for Brownian particles near an absorbing wall". Journal of Physics A: Mathematical and General. 24 (19): 4677–4695. Bibcode:1991JPhA...24.4677K. doi:10.1088/0305-4470/24/19/027. eISSN 1361-6447. ISSN 0305-4470.

Read other articles:

青戸 慎司 選手情報ラテン文字 Shinji Aoto国籍 日本種目 短距離走大学 中京大学早稲田大学大学院生年月日 (1967-05-07) 1967年5月7日(56歳)出身地 和歌山県和歌山市身長 178cm体重 69kg成績オリンピック 100m 2次予選4組7着 (1992年)4x100mR 6位 (1992年)自己ベスト100m 10秒28 (1988年, 1989年) 獲得メダル 陸上競技 日本 ユニバーシアード 銅 1987 ザグレブ 4x100mR 編集  青戸 慎司(あおと し...

 

Ергард Месслахернім. Erhard MößlacherНародився 16 червня 1921(1921-06-16)Вайсбах-бай-Лофер, Целль-ам-Зее (округ), Зальцбург, АвстріяПомер 12 лютого 1945(1945-02-12) (23 роки)Будапешт, Угорське королівствоКраїна  АвстріяУчасник Друга світова війнаВійськове звання ОберштурмфюрерНагороди Лица...

 

2014 studio album by Sean PaulFull FrequencyStudio album by Sean PaulReleased18 February 2014 (2014-02-18)GenreDancehall popLength49:37LabelVP, AtlanticProducerStargate, The Cataracs, Chef Tone, Benny Blanco, Giorgio TuinfortSean Paul chronology Tomahawk Technique(2012) Full Frequency(2014) Mad Love the Prequel(2018) Singles from Full Frequency Other Side of LoveReleased: 10 September 2013 Entertainment 2.0Released: 10 October 2013 Turn It UpReleased: 30 October 2013 Wa...

Сінан Болат Сінан Болат Особисті дані Народження 3 вересня 1988(1988-09-03) (35 років)   Кайсері, Туреччина Вага 80 кг Громадянство  Туреччина Позиція воротар Інформація про клуб Поточний клуб «Гент» Номер 38 Юнацькі клуби 1992—19961996-2005 «Зонговен»[nl] «Генк» Професіональні к...

 

Free school in Burnley, LancashireBurnley High SchoolAddressByron StreetBurnley, Lancashire, BB12 6NXCoordinates53°47′42″N 2°17′38″W / 53.795°N 2.294°W / 53.795; -2.294InformationTypeFree schoolEstablished2014TrustEducation Partnership TrustDepartment for Education URN141028 TablesOfstedReportsChair of GovernorsPete BakerHeadteacherEmma StarkeyGenderMixedAge11 to 16Websitehttp://burnleyhigh.com/ Burnley High School is a mixed secondary free school locat...

 

Village in Lublin Voivodeship, PolandOpoka-KoloniaVillageOpoka-KoloniaCoordinates: 50°52′2″N 21°53′9″E / 50.86722°N 21.88583°E / 50.86722; 21.88583Country PolandVoivodeshipLublinCountyKraśnikGminaAnnopolPopulation • Total390 Opoka-Kolonia [ɔˈpɔka kɔˈlɔɲa] is a village in the administrative district of Gmina Annopol, within Kraśnik County, Lublin Voivodeship, in eastern Poland.[1] It lies approximately 3 kilometres (2&#...

Wee Kim Wee黄金辉Presiden Singapura 4Masa jabatan2 September 1985 – 1 September 1993Perdana MenteriLee Kuan YewGoh Chok TongPendahuluDevan NairPenggantiOng Teng Cheong Informasi pribadiLahir(1915-11-04)4 November 1915SingapuraMeninggal2 Mei 2005(2005-05-02) (umur 89)Siglap, SingapuraKebangsaanSingapuraSuami/istriKoh Sok HiongPekerjaanJurnalis; PolitikusSunting kotak info • L • B Dr Wee Kim Wee (黄金辉, Huáng Jīnhuī,4 November 1915 – 2...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ministry of Education Science and Technology – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and when to remove this template message) Ministry of Education (Science and Technology)ပညာရေးဝန်ကြီးဌာန (...

 

Увага: це зображення не може бути завантажене до Wikimedia Commons. Згідно із Законом України «Про авторське право і суміжні права» виключні права на використання творів архітектури, містобудування, садово-паркового мистецтва належать виключно їх авторам (частина 4 статті 15 Зак...

Location of Liège Island in the Antarctic Peninsula region. Sumer Passage (Bulgarian: проток Сумер, ‘Protok Sumer’ \'pro-tok su-'mer\) is the 970 m wide passage in the Palmer Archipelago between Davis Island on the north and Albena Peninsula, Brabant Island on the south. It connects Bouquet Bay and Gerlache Strait, another connection between the two being Zlogosh Passage. The passage is named after the settlement of Sumer in Northwestern Bulgaria. Location Sumer Passage is loc...

 

Zoological garden in Giza, Egypt You can help expand this article with text translated from the corresponding article in Arabic. (March 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a top...

 

Neighborhood of Chennai, India For other uses, see Guindy (disambiguation). Neighbourhood in Chennai, Tamil Nadu, IndiaGuindy கிண்டிNeighbourhoodAshok Leyland Corporate Headquarter in Guindy, ChennaiNickname: Gateway to ChennaiGuindyGuindy, Tamil NaduShow map of ChennaiGuindyGuindy (Tamil Nadu)Show map of Tamil NaduGuindyGuindy (India)Show map of IndiaCoordinates: 13°00′24″N 80°13′14″E / 13.006700°N 80.220600°E / 13.006700; 80.220600Country...

For the roller coaster at Carowinds, see Fury 325. Launched roller coaster at Bobbejaanland FuryBobbejaanlandLocationBobbejaanlandCoordinates51°11′57″N 4°54′32″E / 51.1993°N 4.9090°E / 51.1993; 4.9090StatusOperatingSoft opening dateJune 22, 2019 (2019-06-22)Opening dateJune 24, 2019 (2019-06-24)General statisticsTypeSteel – LaunchedManufacturerGerstlauerModelInfinity CoasterLift/launch systemLSM launchHeight43 m (14...

 

Tunisian political party Tahya Tounes تحيا تونسFrench nameVive la TunisieLeaderYoussef ChahedSecretary-GeneralSelim AzzabiSpokespersonKamel MorjaneFounderYoussef ChahedFounded27 January 2019 (2019-01-27)[1]Legalized4 March 2019 (2019-03-04)Split fromNidaa TounesHeadquarters16, rue du Brésil. TunisMembership (2019)84,291[2]IdeologyBourguibism[3]Secularism[4]Liberalism[5]Political positionCentreAssembly of ...

 

1958 British filmI Was Monty's DoubleTheatrical release posterDirected byJohn GuillerminScreenplay byBryan ForbesBased onI Was Monty's Doubleby M. E. Clifton JamesProduced byMaxwell Setton at Walton StudiosStarring M. E. Clifton James John Mills Cecil Parker CinematographyBasil EmmottEdited byMax BenedictMusic byJohn AddisonDistributed byAssociated British-Pathé LimitedRelease date 21 September 1958 (1958-09-21) Running time99 min.CountryUnited KingdomLanguageEnglish I Was Mon...

Light rail station, San Jose, California StoryGeneral informationLocationCapitol ExpresswaySan Jose, CaliforniaCoordinates37°21′03″N 121°49′37″W / 37.3507°N 121.8270°W / 37.3507; -121.8270Owned bySanta Clara Valley Transportation AuthorityLine(s)Capitol ExpresswayTracks2ConstructionStructure typeElevatedAccessibleYesHistoryOpening2029; 6 years' time (2029)Future service Preceding station VTA light rail Following station Alum Rocktoward Mou...

 

Частина з циклуМашинне навчаннята добування даних Парадигми Кероване навчання Некероване навчання Інтерактивне навчання Пакетне навчання Метанавчання Напівкероване навчання Самокероване навчання Навчання з підкріпленням Навчання на основі правил Квантове машинне ...

 

Marguerite Long Información personalNacimiento 13 de noviembre de 1874 Nimes (Francia) Fallecimiento 13 de febrero de 1966 (91 años)París (Francia) Sepultura Cimetière Saint-Baudile Nacionalidad FrancesaFamiliaCónyuge Joseph de Marliave (desde 1906) EducaciónEducada en Conservatorio de París Información profesionalOcupación Pianista y profesora de música Empleador Conservatorio de París Estudiantes Claude Arrieu y Nina Milkina Género Música clásica Instrumento Piano Distinc...

Japanese baseball player Baseball player Takayuki KishiKishi with the Tohoku Rakuten Golden EaglesTohoku Rakuten Golden Eagles – No. 11PitcherBorn: (1984-12-04) December 4, 1984 (age 39)Sendai, Miyagi, JapanBats: RightThrows: RightNPB debutMarch 30, 2007, for the Seibu LionsNPB statistics (through April 6, 2022)Win–loss record142-94Earned run average3.05Strikeouts1,889 Teams Seibu Lions/Saitama Seibu Lions (2007–2016) Tohoku Rakuten Golden Eagles (2017–present) Car...

 

American computer scientist Alan EustaceEustace in 2008BornRobert Alan Eustace[1]1956 or 1957 (age 66–67)[2]Alma materUniversity of Central FloridaOccupationComputer scientistKnown forWorld record for the highest-altitude free-fall jumpBoard member ofAnita Borg Institute for Women and Technology Robert Alan Eustace (born 1957) is an American computer scientist who served as Senior Vice President of Engineering and first Senior Vice President f...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!