Jet (particle physics)

Top quark and anti top quark pair decaying into jets, visible as collimated collections of particle tracks, and other fermions in the CDF detector at Tevatron.

A jet is a narrow cone of hadrons and other particles produced by the hadronization of quarks and gluons in a particle physics or heavy ion experiment. Particles carrying a color charge, i.e. quarks and gluons, cannot exist in free form because of quantum chromodynamics (QCD) confinement which only allows for colorless states. When protons collide at high energies, their color charged components each carry away some of the color charge. In accordance with confinement, these fragments create other colored objects around them to form colorless hadrons. The ensemble of these objects is called a jet, since the fragments all tend to travel in the same direction, forming a narrow "jet" of particles. Jets are measured in particle detectors and studied in order to determine the properties of the original quarks.

A jet definition includes a jet algorithm and a recombination scheme.[1] The former defines how some inputs, e.g. particles or detector objects, are grouped into jets, while the latter specifies how a momentum is assigned to a jet. For example, jets can be characterized by the thrust. The jet direction (jet axis) can be defined as the thrust axis. In particle physics experiments, jets are usually built from clusters of energy depositions in the detector calorimeter. When studying simulated processes, the calorimeter jets can be reconstructed based on a simulated detector response. However, in simulated samples, jets can also be reconstructed directly from stable particles emerging from fragmentation processes. Particle-level jets are often referred to as truth-jets. A good jet algorithm usually allows for obtaining similar sets of jets at different levels in the event evolution. Typical jet reconstruction algorithms are, e.g., the anti-kT algorithm, kT algorithm, cone algorithm. A typical recombination scheme is the E-scheme, or 4-vector scheme, in which the 4-vector of a jet is defined as the sum of 4-vectors of all its constituents.


In relativistic heavy ion physics, jets are important because the originating hard scattering is a natural probe for the QCD matter created in the collision, and indicate its phase. When the QCD matter undergoes a phase crossover into quark gluon plasma, the energy loss in the medium grows significantly, effectively quenching (reducing the intensity of) the outgoing jet.

Example of jet analysis techniques are:

  • jet correlation
  • flavor tagging (e.g., b-tagging)
  • jet substructure.

The Lund string model is an example of a jet fragmentation model.

Jet production

Jets are produced in QCD hard scattering processes, creating high transverse momentum quarks or gluons, or collectively called partons in the partonic picture.

The probability of creating a certain set of jets is described by the jet production cross section, which is an average of elementary perturbative QCD quark, antiquark, and gluon processes, weighted by the parton distribution functions. For the most frequent jet pair production process, the two particle scattering, the jet production cross section in a hadronic collision is given by

with

  • x, Q2: longitudinal momentum fraction and momentum transfer
  • : perturbative QCD cross section for the reaction ij → k
  • : parton distribution function for finding particle species i in beam a.

Elementary cross sections are e.g. calculated to the leading order of perturbation theory in Peskin & Schroeder (1995), section 17.4. A review of various parameterizations of parton distribution functions and the calculation in the context of Monte Carlo event generators is discussed in T. Sjöstrand et al. (2003), section 7.4.1.

Jet fragmentation

Perturbative QCD calculations may have colored partons in the final state, but only the colorless hadrons that are ultimately produced are observed experimentally. Thus, to describe what is observed in a detector as a result of a given process, all outgoing colored partons must first undergo parton showering and then combination of the produced partons into hadrons. The terms fragmentation and hadronization are often used interchangeably in the literature to describe soft QCD radiation, formation of hadrons, or both processes together.

As the parton which was produced in a hard scatter exits the interaction, the strong coupling constant will increase with its separation. This increases the probability for QCD radiation, which is predominantly shallow-angled with respect to the progenitor parton. Thus, one parton will radiate gluons, which will in turn radiate
q

q
pairs and so on, with each new parton nearly collinear with its parent. This can be described by convolving the spinors with fragmentation functions , in a similar manner to the evolution of parton density functions. This is described by a Dokshitzer [de]-Gribov-Lipatov-Altarelli-Parisi (DGLAP) type equation

Parton showering produces partons of successively lower energy, and must therefore exit the region of validity for perturbative QCD. Phenomenological models must then be applied to describe the length of time when showering occurs, and then the combination of colored partons into bound states of colorless hadrons, which is inherently not-perturbative. One example is the Lund String Model, which is implemented in many modern event generators.

Infrared and collinear safety

A jet algorithm is infrared safe if it yields the same set of jets after modifying an event to add a soft radiation. Similarly, a jet algorithm is collinear safe if the final set of jets is not changed after introducing a collinear splitting of one of the inputs. There are several reasons why a jet algorithm must fulfill these two requirements. Experimentally, jets are useful if they carry information about the seed parton. When produced, the seed parton is expected to undergo a parton shower, which may include a series of nearly-collinear splittings before the hadronization starts. Furthermore, the jet algorithm must be robust when it comes to fluctuations in the detector response. Theoretically, If a jet algorithm is not infrared and collinear safe, it can not be guaranteed that a finite cross-section can be obtained at any order of perturbation theory.

See also

References

  1. ^ Salam, Gavin P. (2010-06-01). "Towards jetography". The European Physical Journal C. 67 (3): 637–686. arXiv:0906.1833. Bibcode:2010EPJC...67..637S. doi:10.1140/epjc/s10052-010-1314-6. ISSN 1434-6052. S2CID 119184431.

Read other articles:

Chinese sovereign wealth fund China Investment CorporationHeadquarters at New Beijing Poly PlazaTypeSovereign wealth fundIndustryInvestment serviceFounded2007HeadquartersBeijing, ChinaKey peoplePeng Chun (Chairman and CEO) Ju Weimin (Vice Chairman, President and CIO)Operating income US$ 118.012  billion (2019)[1]Net income US$ 110.313  billion (2019)[1]AUM CNY5.58 trillion (2021) US$0.87 trillion[2]Total assets US$ 1,350  billon (2023)Total equity US$ 94...

 

Eduardo Oscar Camaño Eduardo CamañoEduardo Oscar Camaño Presidente da Argentina (interino) Período 30 de dezembro de 2001a 1 de janeiro de 2002 Vice-presidente Nenhum Antecessor(a) Adolfo Rodríguez Saá Sucessor(a) Eduardo Alberto Duhalde Dados pessoais Nascimento 17 de junho de 1946 (77 anos) Buenos Aires, Argentina Nacionalidade argentino Partido Partido Justicialista Profissão advogado Eduardo Oscar Camaño (Buenos Aires, 17 de junho de 1946) é um político argentino do Pa...

 

Ця стаття про книгу. Про екранізацію див. Сало, або 120 днів Содому. 120 днів Содому, або Школа розпустифр. Les 120 Journées de Sodome ou l'école du libertinage Титульна сторінка першого видання 1904 рокуЖанр еротика, порнографія, романФорма романТема садомазохізмАвтор Маркіз де СадМова французькаНа

En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss[1]) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. Définition Représentation graphique...

 

Handley Page Type G Vista trasera del Type G. Tipo Biplano biplazaFabricante Handley Page Aircraft CompanyDiseñado por Frederick Handley PagePrimer vuelo 6 de noviembre de 1913[1]​Retirado 1915N.º construidos 1[editar datos en Wikidata] El Handley Page Type G fue un biplano biplaza británico, diseñado por Handley Page, que voló por primera vez en 1913. Sólo se construyó un ejemplar. Diseño y desarrollo Vista lateral del Type G. El Type G fue el primer biplano diseñado...

 

Jepang Artikel ini adalah bagian dari seri Politik dan KetatanegaraanJepang Konstitusi Konstitusi Jepang Sejarah Hukum Monarki Kaisar (daftar) Akihito Putra Mahkota Naruhito Istana Kaisar Badan Rumah Tangga Kekaisaran Badan legislatif Parlemen Jepang Dewan Perwakilan Rakyat Ketua Tadamori Ōshima Wakil Ketua Hirotaka Akamatsu Majelis Tinggi Presiden Chuichi Date Wakil Presiden Akira Gunji Pemimpin Oposisi Yukio Edano Eksekutif Perdana Menteri (daftar) Shinzō Abe Wakil Perdana Menteri Tarō A...

Salah satu motif Batik Pringgondani Batik Pringgondani (aksara Jawa: ꦥꦿꦶꦁꦒꦺꦴꦤ꧀ꦢꦤꦶ) adalah salah satu motif batik Jawa, Indonesia. Pringgondani atau pringgodani adalah nama sasana kesatriyan tempat tinggal Gatotkaca putra Werkudara. Corak ini umumnya dirancang dalam warna-warna gelap seperti biru nila dan soga-coklat. Ragam hias yang ditampilkan adalah tatanan rumit penuh sulur-suluran kecil yang diselingi dengan naga.[1] Asal kata Pringgondani dalam bahasa Jawa...

 

Joshua A. Lomberger Josh Mathews 2010 Personalia Geburtstag 25. November 1980 Geburtsort Sea Isle City, New Jersey Karriereinformationen Ringname(n) Josh Mathews Körpergröße 175 Kampfgewicht 65 Angekündigt aus Sea Isle City, New Jersey Promotion WWE Tough Enough Staffel 1World Wrestling Entertainment (2002–2015)Global Force Wrestling (seit 2015) Trainiert von Al SnowJacqueline MooreTazzTori Debüt 2001 (als Wrestler) Josh Mathews (* 25. November 1980 in Sea Isle City, New Jersey als Jos...

 

Live at the MarqueeAlbum live karya Dream TheaterDirilis3 September 1993DirekamThe Marquee Club di London, 23 April 1993GenreProgressive metal, progressive rockDurasi51:33LabelAtco RecordsKronologi Dream Theater Images and Words(1992)Images and Words1992 Live at the Marquee (1993) Awake(1994)Awake1994 Penilaian profesional Skor ulasan Sumber Nilai Allmusic [1] Live at Marquee adalah album live yang direkam di London Marquee Club oleh band progressive metal / rock Dream Theater. Da...

Quantified characteristic in role-playing games Part of a series onRole-playing games Types Tabletop Live action Video game Forum Topics Campaign setting Character creation History System Theory GNS theory Threefold model Terminology Terms Actual play Adventure Gamemaster Player character Non-player character Statistic Lists Campaign settings LARP groups Production Artists Designers Publishers Games Tabletop WikiProjectvte This article needs additional citations for verification. Please help ...

 

Stephen Payn was Dean of Exeter between 1415 and 1419.[1] He was preceded by Ralph Tregrision and followed by John Cobethorn. Notes ^ Ursula Radford (1955). An Introduction to the Deans of Exeter. Report & Transactions of the Devonshire Association 87: 1–24. Catholic Church titles Preceded byRalph Tregrision Dean of Exeter 1415–1419 Succeeded byJohn Cobethorn vteDeans of ExeterHigh Medieval Serlo Roger de Wynkleigh William de Stanwey Roger de Toriz John Noble Joh...

 

Gagak hutan Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passeriformes Famili: Corvidae Genus: Corvus Spesies: C. enca Nama binomial Corvus enca(Horsfield, 1822) Sinonim Corvus violaceus Gagak hutan (bahasa Latin: Corvus enca) adalah spesies burung dari keluarga Corvidae, dari genus Corvus. Burung ini merupakan jenis burung pemakan buah lembut, mengkudu, Ficus, pepaya, kumbang, serangga, kada yang m...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chudadhuj Dharadilok – news · newspapers · books · scholar · JSTOR (February 2009) (Learn how and when to remove this template message) Prince of Phetchabun Chudadhuj DharadilokจุฑาธุชธราดิลกPrince of PhetchabunBorn(1892-07-04)4 July 1892Sichang Islan...

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (August 2018) (Learn how and when to remove this template message) The quantum pendulum is fundamental in understanding hindered internal rotations in chemistry, quantum features of scattering atoms, as well as numerous other quantum phenomena. Though a pendulum not subject t...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ghostwriter book series – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this template message) One of the Ghostwriter books As with many television shows, Ghostwriter[1][circular reference] (4 Oc...

Spiced dried beef Pastirma Pastirma or basturma,[1] also called pastarma,[2] pastourma,[3] basdirma,[4] or basterma,[5] is a highly seasoned, air-dried cured beef that is found in the cuisines of Turkey, Armenia, Lebanon, the Levant, Azerbaijan, Bulgaria, Egypt, and Greece,[6][7][8][9] Iraq, and North Macedonia. Etymology and history Pastırma is mentioned in Mahmud of Kashgar's Diwan Lughat al-Turk and Evliya Çelebi...

 

Miranda del Castañar municipio de EspañaBanderaEscudo Vista general de la localidad Miranda del CastañarUbicación de Miranda del Castañar en España. Miranda del CastañarUbicación de Miranda del Castañar en la provincia de Salamanca. Mapa interactivo — Miranda del CastañarPaís  España• Com. autónoma  Castilla y León• Provincia  Salamanca• Comarca Sierra de Francia• Partido judicial Béjar• Mancomuni...

 

Bilateral relationsIsrael–Lebanon relations Israel Lebanon Israel–Lebanon relations have experienced ups and downs since their establishment in the 1940s. Lebanon did take part in the 1948 Arab–Israeli War against Israel, but Lebanon was the first Arab League nation to signal a desire for an armistice treaty with Israel in 1949. Lebanon did not participate in the Six-Day War in 1967, nor the Yom Kippur War in 1973 in any significant way, and until the early 1970s, Lebanon's border with ...

Book by Katherine Addison The Angel of the Crows First editionAuthorKatherine AddisonCountryUnited StatesLanguageEnglishGenreFantasyPublishedJune 23, 2020PublisherTor BooksPages448ISBN978-0765387394 (hardcover 1st ed)OCLC1159883677 The Angel of the Crows is a 2020 fantasy novel written by the American author Sarah Monette under the pseudonym Katherine Addison. It is set in an alternate 19th century London, with supernatural creatures such as angels and is based on the Sherlock Holmes stories....

 

Academic journalFeminist TheologyDisciplineTheologyLanguageEnglishEdited byLisa Isherwood, Lillalou Hughes, Beverley ClackPublication detailsHistory1992 -presentPublisherSAGE PublicationsFrequencyTri-annuallyImpact factor(2010)Standard abbreviationsISO 4 (alt) · Bluebook (alt1 · alt2)NLM (alt) · MathSciNet (alt )ISO 4Fem. Theol.IndexingCODEN (alt · alt2) · JSTOR (alt) · LCCN (alt)MIAR · NLM ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!