Isothermal–isobaric ensemble

The isothermal–isobaric ensemble (constant temperature and constant pressure ensemble) is a statistical mechanical ensemble that maintains constant temperature and constant pressure applied. It is also called the -ensemble, where the number of particles is also kept as a constant. This ensemble plays an important role in chemistry as chemical reactions are usually carried out under constant pressure condition.[1] The NPT ensemble is also useful for measuring the equation of state of model systems whose virial expansion for pressure cannot be evaluated, or systems near first-order phase transitions.[2]

In the ensemble, the probability of a microstate is , where is the partition function, is the internal energy of the system in microstate , and is the volume of the system in microstate .

The probability of a macrostate is , where is the Gibbs free energy.

Derivation of key properties

The partition function for the -ensemble can be derived from statistical mechanics by beginning with a system of identical atoms described by a Hamiltonian of the form and contained within a box of volume . This system is described by the partition function of the canonical ensemble in 3 dimensions:

,

where , the thermal de Broglie wavelength ( and is the Boltzmann constant), and the factor (which accounts for indistinguishability of particles) both ensure normalization of entropy in the quasi-classical limit.[2] It is convenient to adopt a new set of coordinates defined by such that the partition function becomes

.

If this system is then brought into contact with a bath of volume at constant temperature and pressure containing an ideal gas with total particle number such that , the partition function of the whole system is simply the product of the partition functions of the subsystems:

.
The system (volume ) is immersed in a much larger bath of constant temperature, and closed off such that particle number remains fixed. The system is separated from the bath by a piston that is free to move, such that its volume can change.

The integral over the coordinates is simply . In the limit that , while stays constant, a change in volume of the system under study will not change the pressure of the whole system. Taking allows for the approximation . For an ideal gas, gives a relationship between density and pressure. Substituting this into the above expression for the partition function, multiplying by a factor (see below for justification for this step), and integrating over the volume V then gives

.

The partition function for the bath is simply . Separating this term out of the overall expression gives the partition function for the -ensemble:

.

Using the above definition of , the partition function can be rewritten as

,

which can be written more generally as a weighted sum over the partition function for the canonical ensemble

The quantity is simply some constant with units of inverse volume, which is necessary to make the integral dimensionless. In this case, , but in general it can take on multiple values. The ambiguity in its choice stems from the fact that volume is not a quantity that can be counted (unlike e.g. the number of particles), and so there is no “natural metric” for the final volume integration performed in the above derivation.[2] This problem has been addressed in multiple ways by various authors,[3][4] leading to values for C with the same units of inverse volume. The differences vanish (i.e. the choice of becomes arbitrary) in the thermodynamic limit, where the number of particles goes to infinity.[5]

The -ensemble can also be viewed as a special case of the Gibbs canonical ensemble, in which the macrostates of the system are defined according to external temperature and external forces acting on the system . Consider such a system containing particles. The Hamiltonian of the system is then given by where is the system's Hamiltonian in the absence of external forces and are the conjugate variables of . The microstates of the system then occur with probability defined by [6]

where the normalization factor is defined by

.

This distribution is called generalized Boltzmann distribution by some authors.[7]

The -ensemble can be found by taking and . Then the normalization factor becomes

,

where the Hamiltonian has been written in terms of the particle momenta and positions . This sum can be taken to an integral over both and the microstates . The measure for the latter integral is the standard measure of phase space for identical particles: .[6] The integral over term is a Gaussian integral, and can be evaluated explicitly as

.

Inserting this result into gives a familiar expression:

.[6]

This is almost the partition function for the -ensemble, but it has units of volume, an unavoidable consequence of taking the above sum over volumes into an integral. Restoring the constant yields the proper result for .

From the preceding analysis it is clear that the characteristic state function of this ensemble is the Gibbs free energy,

This thermodynamic potential is related to the Helmholtz free energy (logarithm of the canonical partition function), , in the following way:[1]

Applications

  • Constant-pressure simulations are useful for determining the equation of state of a pure system. Monte Carlo simulations using the -ensemble are particularly useful for determining the equation of state of fluids at pressures of around 1 atm, where they can achieve accurate results with much less computational time than other ensembles.[2]
  • Zero-pressure -ensemble simulations provide a quick way of estimating vapor-liquid coexistence curves in mixed-phase systems.[2]
  • -ensemble Monte Carlo simulations have been applied to study the excess properties[8] and equations of state [9] of various models of fluid mixtures.
  • The -ensemble is also useful in molecular dynamics simulations, e.g. to model the behavior of water at ambient conditions.[10]

References

  1. ^ a b Dill, Ken A.; Bromberg, Sarina; Stigter, Dirk (2003). Molecular Driving Forces. New York: Garland Science.
  2. ^ a b c d e Frenkel, Daan.; Smit, Berend (2002). Understanding Molecular Simluation. New York: Academic Press.
  3. ^ Attard, Phil (1995). "On the density of volume states in the isobaric ensemble". Journal of Chemical Physics. 103 (24): 9884–9885. Bibcode:1995JChPh.103.9884A. doi:10.1063/1.469956.
  4. ^ Koper, Ger J. M.; Reiss, Howard (1996). "Length Scale for the Constant Pressure Ensemble: Application to Small Systems and Relation to Einstein Fluctuation Theory". Journal of Physical Chemistry. 100 (1): 422–432. doi:10.1021/jp951819f.
  5. ^ Hill, Terrence (1987). Statistical Mechanics: Principles and Selected Applications. New York: Dover.
  6. ^ a b c Kardar, Mehran (2007). Statistical Physics of Particles. New York: Cambridge University Press.
  7. ^ Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
  8. ^ McDonald, I. R. (1972). "-ensemble Monte Carlo calculations for binary liquid mixtures". Molecular Physics. 23 (1): 41–58. Bibcode:1972MolPh..23...41M. doi:10.1080/00268977200100031.
  9. ^ Wood, W. W. (1970). "-Ensemble Monte Carlo Calculations for the Hard Disk Fluid". Journal of Chemical Physics. 52 (2): 729–741. Bibcode:1970JChPh..52..729W. doi:10.1063/1.1673047.
  10. ^ Schmidt, Jochen; VandeVondele, Joost; Kuo, I. F. William; Sebastiani, Daniel; Siepmann, J. Ilja; Hutter, Jürg; Mundy, Christopher J. (2009). "Isobaric-Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory:An Assessment of the Structure and Density of Water at Near-Ambient Conditions". Journal of Physical Chemistry B. 113 (35): 11959–11964. doi:10.1021/jp901990u. OSTI 980890. PMID 19663399.

Read other articles:

Peristyle Vila Romana del Casale, Sisilia, Italia Vila Romana del Casale (bahasa Inggris: Villa Romana del Casale; bahasa Sisilia: Villa Rumana dû Casali) adalah salah satu rumah kuno peninggalan Kekaisaran Romawi dari sekitar abad ke-4 Masehi yang terus dihuni selama 800 tahun hingga abad ke-12 Masehi.[1][2] Nama Romana del Casale diterjemahkan ke bahasa Inggris menjadi Roman Country Villa dianggap sebagai salah satu tempat tingga (vila) peninggalan masa Peradaban Romawi yan...

 

Víctor Hugo CárdenasPotret Resmi, 1993Wakil Presiden Bolivia ke-35Masa jabatan6 Agustus 1993 – 6 Agustus 1997PresidenGonzalo Sanchez de LozadaPendahuluLuis OssioPenggantiJorge QuirogaMenteri Pendidikan, Olahraga, dan KebudayaanMasa jabatan20 Oktober 2020 – 6 November 2020PresidenJeanine ÁñezPendahuluReynaldo Paredes (pejabat)PenggantiAdrián QuelcaMasa jabatan4 Juni 2020 – 19 Oktober 2020PendahuluDiri sendiri (sebagai Menteri Pendidikan)PenggantiReynal...

 

Cantón de Montmirail Cantón Situación del cantón de Montmirail Coordenadas 48°50′55″N 3°36′29″E / 48.84856048, 3.60807173Capital MontmirailEntidad Cantón • País  Francia • Región Champaña-Ardenas • Departamento Marne • Distrito ÉpernayConsejero general Bernard Doucet (1992-2015)Subdivisiones Comunas 19Superficie   • Total 279.51 km²Población (2010)   • Total 7404 hab. • Densidad 26,4...

Kejuaraan U-16 AFC 2018Kejohanan Remaja B-16 AFC 2018Informasi turnamenTuan rumah MalaysiaJadwalpenyelenggaraan20 September – 7 Oktober 2018Jumlahtim peserta16 (dari 1 konfederasi)Tempatpenyelenggaraan3 (di 2 kota)Hasil turnamenJuara Jepang (gelar ke-3)Tempat kedua TajikistanStatistik turnamenJumlahpertandingan31Jumlah gol97 (3,13 per pertandingan)Jumlahpenonton62.582 (2.019 per pertandingan)Pemain terbaik Jun NishikawaPencetak golterbanyak Noah Botic Shoj...

 

Untuk kegunaan lain, lihat Afridi (disambiguasi). Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2017. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa sa...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) كنيسة الريفايفل أو مركز الأحياء العالمي Revival Center International Revival center international كنيسة الريفايفل هي كنيسة تبشيرية ان

زلاجة جماعيةفريق الولايات المتحدة للتزلج بالزلاجة الجماعية في الألعاب الأولمبية الشتوية 2010معلومات عامةأعلى هيئة منظمة الاتحاد الدولي للزلاجات والهيكل العظميكنية Bobsled, King's classلعبت لأول مرة 1870sالمنتسبون متزلج جماعي الخصائصاتصل Noneأعضاء الفريق Teams of 2 or 4ألعاب مختلطة الجنسي...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 東京都立千早高等学校 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年12月) 東京都立千早高等学校 北緯35度44...

 

Альбом «New Jersey» американской рок-группы Bon Jovi стал одним из лучших по итогам 1989 года, символизируя преобладание тяжелых и хэви-металл групп в чартах года. Список лучших альбомов США 1989 года (Billboard Year End Charts) — итоговый список наиболее популярных альбомов журнала Billboard по ...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be...

 

BelgiumAssociationKoninklijke Belgische KorfbalbondIKF membershipIKF FoundatorIKF codeBEL IKF rank3 (Jan. 2017)[1]World ChampionshipsAppearances11First appearance1978Best resultChampions, 1991World GamesAppearances10First appearance1985Best resultRunners-up, 9 timesEuropean ChampionshipsAppearances8First appearance1998Best resultRunners-up, 6 timeshttp://www.korfbal.be/ The Belgium national korfball team, nicknamed the Belgian Diamonds, is managed by the Koninklijke Belgische Korfbalb...

 

Guida per riconoscere i tuoi santiUna scena del filmTitolo originaleA Guide to Recognizing Your Saints Paese di produzioneStati Uniti d'America Anno2006 Durata98 min Generedrammatico RegiaDito Montiel SoggettoDito Montiel (omonimo romanzo) SceneggiaturaDito Montiel Distribuzione in italianoMikado Film FotografiaÉric Gautier MontaggioJake PushinskyChristopher Tellefsen MusicheJonathan Elias ScenografiaJody Asnes Interpreti e personaggi Robert Downey Jr.: Dito Montiel adulto Shia LaBeouf: Dito...

Biggest market in Anambra State and West Africa Onitsha MarketLocationOnitsha, Anambra State, NigeriaManagementOnitsha Market Traders Association Main Market, Onitsha[1] is one of the largest markets in West Africa based on geographical size and volume of goods.[2] It is based in the city of Onitsha, in Onitsha North Local Government Area, the commercial capital of Anambra State in southeastern Nigeria. The town is located on the east bank of the Niger River that joined the An...

 

機械化歩兵Механізовані війська України機械化部隊のエンブレム(2016年以降)創設1992年国籍 ウクライナ兵科機械化歩兵自動車化歩兵猟兵(軽歩兵)上級部隊 ウクライナ陸軍識別腕章表話編歴 ここでは主に、ウクライナ陸軍における機械化歩兵とその配備部隊について説明する。 歴史 旧ソ連地上軍のキエフ軍管区(ウクライナ語版、ロシア語版、英...

 

أم العلقاء موقع محافظة السليل بالنسبة لمنطقة الرياض تقسيم إداري البلد  السعودية التقسيم الأعلى منطقة الرياض  السكان التعداد السكاني غير معروف نسمة (إحصاء ) تعديل مصدري - تعديل   أم العلقاء، هي قرية من فئة (أ) تقع في محافظة السليل، والتابعة لمنطقة الرياض في السعودية. و...

Controversial South Korean religious groupThe group's founding leader Cho Hee SungVictory Altar (Korean: 승리제단; RR: Seungnijedan; MR: Sŭngnijedan) is a South Korean religious movement that has often been characterized as a cult. The mainline Protestant denominations in South Korea reportedly consider it to be heretical (이단). It was founded in 1981 in Bucheon, Gyeonggi, South Korea by Cho Hee Sung (조희성). It is also known by the name Yeongsae...

 

American artist Roberta GriffithRoberta Griffith (left), with Vivika and Otto Heino (1989)BornRoberta Jean Griffith1937 (age 85–86)Hillsdale, Michigan, U.S.EducationUniversity of Michigan, Chouinard Art Institute, Southern Illinois UniversityOccupation(s)artist, professorEmployerHartwick College (1966–2008) Roberta Jean Griffith (born 1937) is an American contemporary artist working in ceramics, painting, drawing, and glass. She is Professor Emerita of Art at Hartwick College in ...

 

American TV crime drama series BookerGenrePolice proceduralCrime dramaCreated by Eric Blackeney Stephen J. Cannell Starring Richard Grieco Carmen Argenziano Marcia Strassman Opening themeHot in the City (Exterminator Mix) performed by Billy IdolEnding themeHot in the City (Exterminator Mix) performed by Billy IdolComposerMike PostCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes22ProductionExecutive producerBill NussProducers Carleton Eastlake Brooke Kennedy...

For the town of the same name, see Saint-Nectaire, Puy-de-Dôme. For the saint, see Nectarius of Auvergne. Semi-soft cheese from central France Saint-NectaireCountry of originFranceRegion, townAuvergne, Saint NectaireSource of milkCowPasteurisedDepends on varietyTextureSemi-soft washed rindAging time8 weeksCertificationFrench AOC 1955Named afterSaint-Nectaire, Jean Charles de la Ferté Related media on Commons Saint-Nectaire is a French cheese made in the Auvergne region of central France. Th...

 

Hospital in Georgia, United StatesWellstar Atlanta Medical CenterWellstar Health SystemView from BoulevardGeographyLocationAtlanta, Georgia, United StatesCoordinates33°45′46″N 84°22′22″W / 33.76270°N 84.372798°W / 33.76270; -84.372798OrganizationCare systemPrivateTypeTeachingServicesEmergency departmentLevel I trauma centerBeds460HistoryOpened1901Closed2022LinksWebsitewww.wellstar.org/amcListsHospitals in Georgia Wellstar Atlanta Medical Center (formerly kn...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!