Rényi entropy

In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi, who looked for the most general way to quantify information while preserving additivity for independent events.[1][2] In the context of fractal dimension estimation, the Rényi entropy forms the basis of the concept of generalized dimensions.[3]

The Rényi entropy is important in ecology and statistics as index of diversity. The Rényi entropy is also important in quantum information, where it can be used as a measure of entanglement. In the Heisenberg XY spin chain model, the Rényi entropy as a function of α can be calculated explicitly because it is an automorphic function with respect to a particular subgroup of the modular group.[4][5] In theoretical computer science, the min-entropy is used in the context of randomness extractors.

Definition

The Rényi entropy of order , where and , is defined as[1]

It is further defined at as

Here, is a discrete random variable with possible outcomes in the set and corresponding probabilities for . The resulting unit of information is determined by the base of the logarithm, e.g. shannon for base 2, or nat for base e. If the probabilities are for all , then all the Rényi entropies of the distribution are equal: . In general, for all discrete random variables , is a non-increasing function in .

Applications often exploit the following relation between the Rényi entropy and the α-norm of the vector of probabilities:

Here, the discrete probability distribution is interpreted as a vector in with and .

The Rényi entropy for any is Schur concave. Proven by the Schur–Ostrowski criterion.

Special cases

Rényi entropy of a random variable with two possible outcomes against p1, where P = (p1, 1 − p1). Shown are Η0, Η1, Η2 and Η, with the unit on the vertical axis being the shannon.

As approaches zero, the Rényi entropy increasingly weighs all events with nonzero probability more equally, regardless of their probabilities. In the limit for , the Rényi entropy is just the logarithm of the size of the support of X. The limit for is the Shannon entropy. As approaches infinity, the Rényi entropy is increasingly determined by the events of highest probability.

Hartley or max-entropy

is where is the number of non-zero probabilities.[6] If the probabilities are all nonzero, it is simply the logarithm of the cardinality of the alphabet () of , sometimes called the Hartley entropy of ,

Shannon entropy

The limiting value of as is the Shannon entropy:[7]

Collision entropy

Collision entropy, sometimes just called "Rényi entropy", refers to the case ,

where and are independent and identically distributed. The collision entropy is related to the index of coincidence. It is the negative logarithm of the Simpson diversity index.

Min-entropy

In the limit as , the Rényi entropy converges to the min-entropy :

Equivalently, the min-entropy is the largest real number b such that all events occur with probability at most .

The name min-entropy stems from the fact that it is the smallest entropy measure in the family of Rényi entropies. In this sense, it is the strongest way to measure the information content of a discrete random variable. In particular, the min-entropy is never larger than the Shannon entropy.

The min-entropy has important applications for randomness extractors in theoretical computer science: Extractors are able to extract randomness from random sources that have a large min-entropy; merely having a large Shannon entropy does not suffice for this task.

Inequalities for different orders α

That is non-increasing in for any given distribution of probabilities , which can be proven by differentiation,[8] as

which is proportional to Kullback–Leibler divergence (which is always non-negative), where . In particular, it is strictly positive except when the distribution is uniform.

At the limit, we have .

In particular cases inequalities can be proven also by Jensen's inequality:[9][10]

For values of , inequalities in the other direction also hold. In particular, we have[11][12]

On the other hand, the Shannon entropy can be arbitrarily high for a random variable that has a given min-entropy. An example of this is given by the sequence of random variables for such that and since but .

Rényi divergence

As well as the absolute Rényi entropies, Rényi also defined a spectrum of divergence measures generalising the Kullback–Leibler divergence.[13]

The Rényi divergence of order or alpha-divergence of a distribution P from a distribution Q is defined to be

when and . We can define the Rényi divergence for the special values α = 0, 1, ∞ by taking a limit, and in particular the limit α → 1 gives the Kullback–Leibler divergence.

Some special cases:

: minus the log probability under Q that pi > 0;
: minus twice the logarithm of the Bhattacharyya coefficient; (Nielsen & Boltz (2010))
: the Kullback–Leibler divergence;
: the log of the expected ratio of the probabilities;
: the log of the maximum ratio of the probabilities.

The Rényi divergence is indeed a divergence, meaning simply that is greater than or equal to zero, and zero only when P = Q. For any fixed distributions P and Q, the Rényi divergence is nondecreasing as a function of its order α, and it is continuous on the set of α for which it is finite,[13] or for the sake of brevity, the information of order α obtained if the distribution P is replaced by the distribution Q.[1]

Financial interpretation

A pair of probability distributions can be viewed as a game of chance in which one of the distributions defines official odds and the other contains the actual probabilities. Knowledge of the actual probabilities allows a player to profit from the game. The expected profit rate is connected to the Rényi divergence as follows[14]

where is the distribution defining the official odds (i.e. the "market") for the game, is the investor-believed distribution and is the investor's risk aversion (the Arrow–Pratt relative risk aversion).

If the true distribution is (not necessarily coinciding with the investor's belief ), the long-term realized rate converges to the true expectation which has a similar mathematical structure[14]

Properties specific to α = 1

The value , which gives the Shannon entropy and the Kullback–Leibler divergence, is the only value at which the chain rule of conditional probability holds exactly:

for the absolute entropies, and

for the relative entropies.

The latter in particular means that if we seek a distribution p(x, a) which minimizes the divergence from some underlying prior measure m(x, a), and we acquire new information which only affects the distribution of a, then the distribution of p(x|a) remains m(x|a), unchanged.

The other Rényi divergences satisfy the criteria of being positive and continuous, being invariant under 1-to-1 co-ordinate transformations, and of combining additively when A and X are independent, so that if p(A, X) = p(A)p(X), then

and

The stronger properties of the quantities allow the definition of conditional information and mutual information from communication theory.

Exponential families

The Rényi entropies and divergences for an exponential family admit simple expressions[15]

and

where

is a Jensen difference divergence.

Physical meaning

The Rényi entropy in quantum physics is not considered to be an observable, due to its nonlinear dependence on the density matrix. (This nonlinear dependence applies even in the special case of the Shannon entropy.) It can, however, be given an operational meaning through the two-time measurements (also known as full counting statistics) of energy transfers[citation needed].

The limit of the quantum mechanical Rényi entropy as is the von Neumann entropy.

See also

Notes

  1. ^ a b c Rényi (1961)
  2. ^ Rioul (2021)
  3. ^ Barros, Vanessa; Rousseau, Jérôme (2021-06-01). "Shortest Distance Between Multiple Orbits and Generalized Fractal Dimensions". Annales Henri Poincaré. 22 (6): 1853–1885. arXiv:1912.07516. Bibcode:2021AnHP...22.1853B. doi:10.1007/s00023-021-01039-y. ISSN 1424-0661. S2CID 209376774.
  4. ^ Franchini, Its & Korepin (2008)
  5. ^ Its & Korepin (2010)
  6. ^ RFC 4086, page 6
  7. ^ Bromiley, Thacker & Bouhova-Thacker (2004)
  8. ^ Beck & Schlögl (1993)
  9. ^ holds because .
  10. ^ holds because .
  11. ^ holds because
  12. ^ Devroye, Luc; Györfi, Laszlo; Lugosi, Gabor (1996-04-04). A Probabilistic Theory of Pattern Recognition (Corrected ed.). New York, NY: Springer. ISBN 978-0-387-94618-4.
  13. ^ a b Van Erven, Tim; Harremoës, Peter (2014). "Rényi Divergence and Kullback–Leibler Divergence". IEEE Transactions on Information Theory. 60 (7): 3797–3820. arXiv:1206.2459. doi:10.1109/TIT.2014.2320500. S2CID 17522805.
  14. ^ a b Soklakov (2018)
  15. ^ Nielsen & Nock (2011)

References

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) الزبدة المطبوعة عبارة عن مصطلح قديم للزبد الذي تم بيعه بأغلفة مطبوعة مع «بعض الأجهزة الرمزية» كجهاز العلامة التجارية (كما هو الحال دائما في الزبدة الحديثة)....

 

Adolf Luther fotografiert von Lothar Wolleh Adolf Luther: Linsenallee (1990). Krefeld, Ostwall51° 19′ 54″ N, 6° 34′ 0″ O51.3316666666676.5666666666667 Adolf Luther (* 25. April 1912 in Uerdingen; † 20. September 1990 in Krefeld) war ein deutscher Jurist, Künstler und Bildhauer. Er war ein Hauptvertreter der kinetischen Kunst und Optical Art. Inhaltsverzeichnis 1 Leben 2 Literatur 3 Weblinks 4 Einzelnachweise Leben Luther studierte ab 1938 Rechtswisse...

 

  لمعانٍ أخرى، طالع جورج كولز (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2019) جورج كولز معلومات شخصية تاريخ الميلاد 19 أكتوبر 1798  تاريخ الوفاة 22 يناير 1865 (66 سنة)   الجنسية المملكة المتحدة ل...

Xanthostemon Xanthostemon paradoxus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Magnoliopsida Subkelas: Rosidae Ordo: Myrtales Famili: Myrtaceae Subfamili: Myrtoideae Tribus: Xanthostemoneae Genus: XanthostemonF.Muell.[1][2][3] Sinonim[2][3] Daftar Metrosideros subg. Xanthostemon (F.Muell.) F.Muell. Nani sect. Xanthostemon (F.Muell.) Kuntze Nania sect. Xanthostemon orth. var. Kuntze Metr...

 

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Pedro de Sousa Holstein, Herzog von Palmela Sousa Holstein 1814 beim Wiener Kongress, neunter von links, er hält ein Schreiben (zeitgenössische Abbildung) Pedro de Sousa Holstein, (* 8. Mai 1781 in Turin; † 12. Okt...

 

City in Missouri, United StatesRolla, MissouriCityCity of RollaOld Phelps County CourthouseLocation of Rolla within County and StateCoordinates: 37°56′45″N 91°45′39″W / 37.94583°N 91.76083°W / 37.94583; -91.76083CountryUnited StatesStateMissouriCountyPhelpsFounded1858Area[1] • Total12.15 sq mi (31.47 km2) • Land12.13 sq mi (31.41 km2) • Water0.02 sq mi (0.05 km2)Elevati...

Ralph Rieckermann (2014) Ralph Rieckermann (* 8. August 1962 in Lübeck) ist ein deutscher Musiker und Filmkomponist für B-Movies. Bekannt wurde er als Bassist der Rockband Scorpions. Inhaltsverzeichnis 1 Leben 2 Scorpions 3 Filmografie (Auswahl) 4 Weblinks 5 Einzelnachweise Leben Ralph Rieckermann wurde 1962 in Lübeck geboren. Mit 16 Jahren bekam er Musikunterricht in Klavier und Bass und studierte später Musik. 1987 zog Rieckermann nach Los Angeles und spielte dort in der Musikszene mit ...

 

2005 video game 2005 video gameCivilization IVDeveloper(s)Firaxis GamesPublisher(s)2K (Win)Aspyr (Mac)Director(s)Sid MeierProducer(s)Barry Caudill[1]Designer(s)Soren JohnsonProgrammer(s)Soren JohnsonArtist(s)Steve OgdenComposer(s)Jeffery L. BriggsChristopher TinSeriesCivilizationEngineGamebryo[2]Platform(s)Windows, Mac OS XReleaseWindowsNA: October 25, 2005PAL: November 4, 2005Mac OS XNA: June 26, 2006Genre(s)Turn-based strategy, 4XMode(s)Single-player, multiplayer Civilizatio...

 

National park in Kyushu, Japan Yakushima National Park霧島屋久国立公園IUCN category II (national park)View of the Bōzuiwa in the national parkLocationYakushima island, Kagoshima Prefecture, Kyushu, JapanCoordinates30°20′N 130°32′E / 30.33°N 130.53°E / 30.33; 130.53Area325.53 km²Established16 March 2012Governing bodyMinistry of the Environment (Japan) Yakushima National Park (屋久島国立公園, Yakushima Kokuritsu Kōen) is a protected area lo...

2015 Indian filmThe Painted HouseEnglish posterDirected bySantosh BabusenanSatish BabusenanWritten bySantosh BabusenanSatish BabusenanProduced byFifth Element FilmStarringNeha MahajanKaladharan NairAkram MohammedCinematographySantosh BabusenanSatish BabusenanEdited byVijil FXMusic byK. SanthoshDistributed byFifth Element FilmRelease date 2015 (2015) Running time102 minutesCountryIndiaLanguageMalayalam The Painted House (Malayalam title: Chaayam Pooshiya Veedu) is a 2015 Indian Malayalam-...

 

American politician G. Vernon BennettBennett in 1935Member of the Los Angeles City Council for the 10th districtIn officeJuly 1, 1935 – June 30, 1951Preceded byE. Snapper IngramSucceeded byCharles NavarroPresident of the Los Angeles City CouncilIn officeJuly 1, 1941 – June 30, 1943Preceded byRobert L. BurnsSucceeded byRobert L. Burns Personal detailsBorn(1880-02-17)February 17, 1880Waverly, IowaDiedJuly 31, 1968(1968-07-31) (aged 88)Pasadena, CaliforniaPolitical par...

 

1989 Indian filmAshoka ChakravarthyTheatrical Release PosterDirected byS. S. Ravi ChandraWritten byParuchuri Brothers (story / dialogues)Screenplay byS. S. Ravi ChandraProduced bySmt. Kaaja VenkataravammaStarringNandamuri BalakrishnaBhanupriyaCinematographyNandamuri Mohana KrishnaEdited byKotagiri Venkateswara RaoMusic byIlaiyaraajaProductioncompanySri Venkateswara Art Productions.[1]Release date 29 June 1989 (1989-06-29) Running time154 minutesCountryIndiaLanguageTelug...

Family of carnivoran mammal This article is about the family of animals. For other uses, see Hyena (disambiguation). HyenasTemporal range: 22–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N Early Miocene – recent The four extant species of hyena, clockwise from upper left: spotted hyena (Crocuta crocuta), brown hyena (Parahyaena brunnea), aardwolf (Proteles cristata) and striped hyena (Hyaena hyaena) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia ...

 

PZL.37 Łoś, pesawat pengebom sedang milik Polandia. Mitsubishi G4M Betty, pesawat pengebom sedang milik Jepang. Pesawat pengebom sedang adalah jenis pesawat pembom yang membawa muatan bom sedang, sekitar satu hingga tiga ton. Pesawat jenis ini sudah pasti multi-mesin dan multi-kru. Di era antarperang, terdapat suatu periode dimana banyak pesawat-pesawat pengebom yang dibuat dengan desain monoplane streamline, memanfaatkan hasil riset dari pesawat komersial generasi terbaru agar bisa terbang...

 

For the surname, see Johnstone (surname). Town in ScotlandJohnstoneScottish Gaelic: Baile IainScots: JohnstounTownFrom top, left to right: Houstoun Square, Johnstone War Memorial, Johnstone Castle, Johnstone Parish Church, Johnstone railway stationJohnstoneLocation within RenfrewshirePopulation15,930 (mid-2020 est.)[1]LanguageEnglish, ScotsOS grid referenceNS434628• Edinburgh52 mi (84 km)Council areaRenfrewshireLieutenancy areaRenfrewshir...

2007 film by Sanjay Leela Bhansali SaawariyaTheatrical release posterDirected bySanjay Leela BhansaliWritten byPrakash KapadiaVibhu PuriBased onWhite Nightsby Fyodor DostoyevskyProduced bySanjay Leela BhansaliStarringRanbir KapoorSonam KapoorRani MukerjiSalman KhanZohra SehgalNarrated byRani MukerjiCinematographyRavi K. ChandranEdited byBela SehgalMusic byMonty SharmaProductioncompaniesColumbia Pictures[1]SPE Films India[1]SLB FilmsDistributed bySony Pictures Releasing Interna...

 

Чуваська Республіка рос. Чăваш Республики, Çovaş Respupliki, چأۋاش رەسپوپلېكې Чувашская Республика     Прапор Чувашії Герб Чувашії Гімн ЧувашіїdКраїна  РосіяФед. округ ПриволзькийАдмін. центр ЧебоксариГлава Oleg Nikolaevd[1]Дата утворення 13 лютого 1992Оф. вебсайт cap.ru​(рос...

 

Efek Stark dari atom hidrogen dalam medan listrik dengan nilai n=15 dan m=0 Efek Stark adalah pergeseran atau pemisahan garis spektrum atom menjadi beberapa komponen disebabkan oleh adanya medan listrik eksternal. Efek ini analog dengan efek Zeeman, yaitu pemisahan sebuah garis spektral menjadi beberapa komponen karena adanya medan magnet. Referensi E. U. Condon and G. H. Shortley (1935). The Theory of Atomic Spectra. Cambridge University Press. ISBN 0-521-09209-4.  H. W. Kroto (199...

Train station in Meriden, Connecticut, US MeridenThe newly rebuilt Meriden station in December 2017General informationLocation60 State Street, Meriden, ConnecticutUnited StatesCoordinates41°32′22″N 72°48′03″W / 41.5394°N 72.8008°W / 41.5394; -72.8008Owned byConnDOTLine(s)New Haven–Springfield LinePlatforms2 side platformsTracks2Bus stands4Connections CT Transit: 215, 561, 563, 564, 565, 566 Middletown Area Transit: M Link ConstructionParking Surface lot: ...

 

Book by Morton Thompson First edition The Cry and the Covenant is a novel by Morton Thompson written in 1949 and published by Doubleday. The novel is a fictionalized story of Ignaz Semmelweis, an Austrian-Hungarian physician known for his research into puerperal fever and his advances in medical hygiene. The novel includes historical references, and details into Semmelweis' youth and education, as well as his later studies. Synopsis Ignaz Semmelweis is a curious child who often gets in troubl...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!