In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.
The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:
And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:
Where the new parameter w {\displaystyle w} defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:[1]
K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfies the inhomogeneous Bessel's differential equation
Both J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} , H v ( 1 ) ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)} and H v ( 2 ) ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)} satisfy the partial differential equation
Both I v ( z , w ) {\displaystyle I_{v}(z,w)} and K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfy the partial differential equation
Base on the preliminary definitions above, one would derive directly the following integral forms of J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} :
With the Mehler–Sonine integral expressions of J v ( z ) = 2 π ∫ 0 ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z)={\dfrac {2}{\pi }}\int _{0}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z ) = − 2 π ∫ 0 ∞ cos ( z cosh t − v π 2 ) cosh v t d t {\displaystyle Y_{v}(z)=-{\dfrac {2}{\pi }}\int _{0}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} mentioned in Digital Library of Mathematical Functions,[2]
we can further simplify to J v ( z , w ) = 2 π ∫ w ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z,w)={\dfrac {2}{\pi }}\int _{w}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z , w ) = − 2 π ∫ w ∞ cos ( z cosh t − v π 2 ) cosh v t d t {\displaystyle Y_{v}(z,w)=-{\dfrac {2}{\pi }}\int _{w}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} , but the issue is not quite good since the convergence range will reduce greatly to | v | < 1 {\displaystyle |v|<1} .