Impossible object

An impossible cube—invented by M. C. Escher for Belvedere, a lithograph in which a boy seated at the foot of the building holds an impossible cube.[1][2]

An impossible object (also known as an impossible figure or an undecidable figure) is a type of optical illusion that consists of a two-dimensional figure which is instantly and naturally understood as representing a projection of a three-dimensional object but cannot exist as a solid object. Impossible objects are of interest to psychologists, mathematicians and artists without falling entirely into any one discipline.

Notable examples

Notable impossible objects include:

Explanations

Impossible objects can be unsettling because of our natural desire to interpret 2D drawings as three-dimensional objects. This is why a drawing of a Necker cube would most likely be seen as a cube, rather than "two squares connected with diagonal lines, a square surrounded by irregular planar figures, or any other planar figure". Looking at different parts of an impossible object makes one reassess the 3D nature of the object, which confuses the mind.[6]

In most cases the impossibility becomes apparent after viewing the figure for a few seconds. However, the initial impression of a 3D object remains even after it has been contradicted. There are also more subtle examples of impossible objects where the impossibility does not become apparent spontaneously and it is necessary to consciously examine the geometry of the implied object to determine that it is impossible.

Roger Penrose wrote about describing and defining impossible objects mathematically using the algebraic topology concept of cohomology.[7][8]

History

An early example of an impossible object comes from Apolinère Enameled, a 1916 advertisement painted by Marcel Duchamp. It depicts a girl painting a bed-frame with white enamelled paint, and deliberately includes conflicting perspective lines, to produce an impossible object. To emphasise the deliberate impossibility of the shape, a piece of the frame is missing.

A 3D-printed version of the Reutersvärd Triangle illusion, its appearance created by a forced perspective.

Swedish artist Oscar Reutersvärd was one of the first to deliberately design many impossible objects. He has been called "the father of impossible figures".[9] In 1934, he drew the Penrose triangle, some years before the Penroses. In Reutersvärd's version, the sides of the triangle are broken up into cubes.

In 1956, British psychiatrist Lionel Penrose and his son, mathematician Roger Penrose, submitted a short article to the British Journal of Psychology titled "Impossible Objects: A Special Type of Visual Illusion". This was illustrated with the Penrose triangle and Penrose stairs. The article referred to Escher, whose work had sparked their interest in the subject, but not Reutersvärd, of whom they were unaware. The article was published in 1958.[4]

From the 1930s onwards, Dutch artist M. C. Escher produced many drawings featuring paradoxes of perspective gradually working towards impossible objects.[9] In 1957, he produced his first drawing containing a true impossible object: Cube with Magic Ribbons. He produced many further drawings featuring impossible objects, sometimes with the entire drawing being an impossible object. Waterfall and Belvedere are good examples of impossible constructions. His work did much to draw the attention of the public to impossible objects.

Some contemporary artists are also experimenting with impossible figures, for example, Jos de Mey, Shigeo Fukuda, Sandro del Prete, István Orosz (Utisz), Guido Moretti, Tamás F. Farkas, Mathieu Hamaekers, and Kokichi Sugihara.

Constructed impossible objects

Although possible to represent in two dimensions, it is not geometrically possible for such an object to exist in the physical world. However some models of impossible objects have been constructed, such that when they are viewed from a very specific point, the illusion is maintained. Rotating the object or changing the viewpoint breaks the illusion, and therefore many of these models rely on forced perspective or having parts of the model appearing to be further or closer than they actually are.

The notion of an "interactive impossible object" is an impossible object that can be viewed from any angle without breaking the illusion.[10]

As the viewing angle changes of this sculpture in East Perth, Australia, a Penrose triangle appears to form.

See also

  • Four-dimensional space – Geometric space with four dimensions
  • Mathematics and art – Relationship between mathematics and art
  • Möbius strip – Non-orientable surface with one edge
  • Multistable perception – Perceptual phenomenon
  • Necker cube – Form of perceptual phenomena
  • Non-Euclidean geometry – Two geometries based on axioms closely related to those specifying Euclidean geometry
  • Paradox – Statement that apparently contradicts itself
  • Pareidolia – Perception of meaningful patterns or images in random or vague stimuli
  • Puzzle – Problem or enigma that tests
  • Strange loop – Cyclic structure that goes through several levels in a hierarchical system
  • Surrealism – International cultural movement active from the 1920s to the 1950s
  • Tesseract – Four-dimensional analogue of the cube
  • Tritone paradox – An auditory illusion perceived by some people to be rising in pitch and by others to be falling

References

  1. ^ Bruno Ernst (Hans de Rijk) (2003). "Selection is Distortion". In Schattschneider, D.; Emmer, M. (eds.). M. C. Escher's Legacy: A Centennial Celebration. Springer. pp. 5–16. ISBN 978-3-540-28849-7.
  2. ^ Barrow, John D (1999). Impossibility: The Limits of Science and the Science of Limits. Oxford University Press. p. 14. ISBN 9780195130829.
  3. ^ Aigner, Martin; Ziegler, Günter M. (2018). "Chapter 15: The Borromean Rings Don't Exist". Proofs from THE BOOK (6th ed.). Springer. pp. 99–106. doi:10.1007/978-3-662-57265-8_15. ISBN 978-3-662-57265-8.
  4. ^ a b Penrose, LS; Penrose, R. (1958). "Impossible objects: A special type of optical illusion". British Journal of Psychology. 49 (1): 31–33. doi:10.1111/j.2044-8295.1958.tb00634.x. PMID 13536303.
  5. ^ "Impossible Fork". Wolfram Research. Retrieved 10 February 2014.
  6. ^ "Impossible Figures in Perceptual Psychology". Fink.com. Retrieved 11 February 2014.
  7. ^ Phillips, Tony. "The Topology of Impossible Spaces". American Mathematical Society.
  8. ^ Penrose, Roger (1992). "On the Cohomology of Impossible Figures". Leonardo. 25 (3, 4). The MIT Press: 245–247. doi:10.2307/1575844. JSTOR 1575844. S2CID 125905129.
  9. ^ a b Seckel, Al (2004). Masters of Deception: Escher, Dalí & the Artists of Optical Illusion. Sterling Publishing Company. p. 261. ISBN 1402705778.
  10. ^ Khoh, Chih W.; Kovesi, Peter (February 1999). "Animating Impossible Objects". Archived from the original on 28 May 2015. Retrieved 10 February 2014.

Further reading

Read other articles:

Marvel Comics fictional character Unus redirects here. For the village in Azerbaijan, see Unus, Azerbaijan. For the American community, see Unus, West Virginia. Comics character Unus the UntouchableUnus the UntouchablePublication informationPublisherMarvel ComicsFirst appearanceX-Men #8 (November 1964)Created byStan Lee (writer)Jack Kirby (artist)In-story informationAlter egoAngelo Unus Unuscione; legally changed to Gunther BainSpeciesHuman mutantTeam affiliationsFactor ThreeBrotherhood of Mu...

 

 

De vlucht naar Egypte Kunstenaar Rembrandt van Rijn Jaar 1627 Techniek Olieverf op paneel Afmetingen 26 × 24 cm Museum Museum voor Schone Kunsten Locatie Tours RKD-gegevens Portaal    Kunst & Cultuur De vlucht naar Egypte is een vroeg schilderij van de Nederlandse schilder Rembrandt van Rijn. Het bevindt zich in het Museum voor Schone Kunsten in de Franse stad Tours. Voorstelling Rembrandt. Rust op de vlucht naar Egypte. Ca. 1626. Ets. Het werk stelt Jozef, Maria en het ki...

 

 

First black female judge in Washington D.C. Marjorie McKenzie LawsonBorn1912 Pittsburgh DiedOctober 11, 2002  (aged 89–90)Bethesda Alma materUniversity of MichiganTerrell Law SchoolColumbia Law School OccupationLawyer, columnist, judge Spouse(s)Belford Lawson Jr.  Marjorie McKenzie Lawson (March 2, 1912 – October 11, 2002) was an African American attorney and judge who served on multiple federal commissions. Lawson's work as a lawyer fo...

Members-only private club This article is about traditional gentlemen's clubs. For the euphemism, see strip club. The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (October 2023) (Learn how and when to remove this template message) Reform Club, a prominent club in London since the early 19th century A gentlemen's club is a private social club...

 

 

This article is about the hill and refuge castle in the Lippe Uplands. For the hillfort on the Süntel, see Amelungsburg (Süntel). AmelungsburgAmelungsburg in the Lippe UplandsHighest pointElevation292 m (958 ft)Coordinates52°02′52″N 8°59′03″E / 52.04778°N 8.98417°E / 52.04778; 8.98417GeographyAmelungsburgNorth Rhine-Westphalia, GermanyShow map of North Rhine-WestphaliaAmelungsburgAmelungsburg (Germany)Show map of Germany Parent rangeLippe U...

 

 

Provenance of the words of the Romanian language. The lexis of the Romanian language (or Daco-Romanian), a Romance language, has changed over the centuries as the language evolved from Vulgar Latin, to Common Romanian, to medieval, modern and contemporary Romanian. A large proportion (about 42%) of present-day Romanian lexis is not inherited from Latin and in some semantic areas loanwords far outnumber inherited ones making Romanian an example of a language with a high degree of lexical perme...

  Tortuga de orejas amarillas Joven ejemplar de Trachemys scripta scriptaEstado de conservaciónPreocupación menor (UICN 3.1)TaxonomíaReino: AnimaliaFilo: ChordataClase: SauropsidaSubclase: DiapsidaOrden: TestudinesFamilia: EmydidaeGénero: TrachemysEspecie: T. scriptaSubespecie: T. s. scripta(Schoepff, 1792)[editar datos en Wikidata] La tortuga de orejas amarillas (Trachemys scripta scripta) es una tortuga de la familia Emydidae, que habita desde la parte Este de Estado...

 

 

Conventional division in Irish mythology The Tuatha Dé Danann in John Duncan's Riders of the Sidhe (1911) Part of a series onCeltic mythologies Religion (Proto) Deities (list) Animism Gaelic Irish Scottish Brythonic Welsh Breton Cornish Literary works Mythological Cycle Ulster Cycle Fianna Cycle Kings' Cycles Mabinogion Matter of Britain Welsh Triads Motifs Otherworld Beheading game Champion's portion Geas Imbas Sovereignty goddess/Loathly lady Magic mist Niskai Sacred trees Shapeshifting Si...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Busur Ketidakstabilan (bahasa Inggris: Arc of Instability) adalah untaian negara-bangsa yang politiknya tidak stabil di kawasan Asia-Pasifik. Istilah ini tercipta pada akhir 1990-an dan populer di kalangan politikus dan wartawan Australia. Busur ini ...

Nono SukarnoInformasi pribadiLahir18 Agustus 1947 (umur 76)Surakarta, Jawa TengahSuami/istriNy. Niniek MindarwatiAnak1. Ferry Eko Christianto 2. Deddy Chandra 3. Christina SulistyowatiAlma materAkademi Angkatan Laut (1971)PekerjaanTentara Nasional IndonesiaKarier militerPihak IndonesiaDinas/cabang TNI Angkatan LautPangkat Mayor Jenderal TNISatuanKorps MarinirSunting kotak info • L • B Mayor Jenderal TNI Mar (Purn.) Nono Sukarno (lahir 18 Agustus 1947) adalah seorang pu...

 

 

American actress This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2014) (Learn how and when to remove this template message) Lucille CarrollBornGarnett Lucille Ryman(1906-06-10)June 10, 1906Macon County, Illinois, U.S.DiedOctober 23, 2002(2002-10-23) (aged 96)Glendale, California, U.S.Alma materMillikin UniversityOccupationActressRelativesHerber...

 

 

Fernando Reinares Fernando Reinares Nestares (Logroño, 13 de septiembre de 1960)[1]​ es un politólogo, experto en terrorismo y radicalización violenta, escritor y profesor universitario español. Su vida profesional se ha centrado en el estudio de estos fenómenos, desde ETA hasta el terrorismo yihadista de Al Qaeda y Estado Islámico. Cabe destacar su investigación sobre los atentados del 11M, quién estuvo detrás y por qué se atentó en España. Biografía Catedrático de Cienci...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Narwee High School – news · newspapers · books · scholar · JSTOR (July 2015) (Learn how and when to remove this template message) School in Narwee, New South Wales, AustraliaNarwee High SchoolLocationNarwee, New South WalesAustraliaCoordinates33°56′59″S 15...

 

 

Supercopa de España XXVI Edición (2023)Datos generalesSede EspañaOrganizador RFEVbPalmarésCampeón C.V. GuaguasSubcampeón Grupo Herce SoriaDatos estadísticosParticipantes 2 (Campeón de Superliga y Copa del Rey)Partidos 1 (Final a partido único)Más títulos C.V. Teruel (9 títulos) Sitio oficial [editar datos en Wikidata] La Supercopa de España es una competición nacional de clubes organizada por la Real Federación Española de Voleibol (RFEVb), que enfrenta a los campeon...

 

 

Vila Chã de Ourique Freguesia Escudo Vila Chã de OuriqueLocalización de Vila Chã de Ourique en PortugalCoordenadas 39°10′20″N 8°45′57″O / 39.172222222222, -8.7658333333333Entidad Freguesia • País Venezuela • Concelho Cartaxo • Distrito SantarénSuperficie   • Total 33,19 km²Población (2001)   • Total 2 hab. • Densidad 0,06 hab/km²Gentilicio Ouriquense[editar datos en Wikidata] Vila Chã d...

1999 film by Albert Pyun Urban MenaceDirected byAlbert PyunWritten byHannah BlueAndrew MarkellTim StoryProduced byPaul RosenblumTom KarnowskiMark AllenStarringSnoop DoggBig PunIce-TFat JoeCinematographyPhilip Alan WatersEdited byErrin VasquezDistributed byFilmwerksImperial EntertainmentRelease date 1999 (1999) Running time72 minutesCountryUnited StatesLanguageEnglish Urban Menace is a 1999 American horror film directed by Albert Pyun and starring Snoop Dogg, Big Pun, Ice-T and Fat Joe. P...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ide, Kyoto – news · newspapers · books · scholar · JSTOR (October 2022) (Learn how and when to remove this template message) Town in Kansai, JapanIde 井手町TownIde Town Hall FlagEmblemLocation of Ide in Kyoto PrefectureIdeLocation in JapanCoordinates: 34°48...

 

 

1957 film by Richard Thorpe Tip on a Dead JockeyTheatrical film posterDirected byRichard ThorpeWritten byCharles LedererBased onTip on a Dead Jockeyby Irwin ShawProduced byEdwin H. KnopfStarringRobert TaylorDorothy MaloneCinematographyGeorge J. FolseyEdited byBen LewisMusic byMiklós RózsaProductioncompanyMetro-Goldwyn-MayerRelease date September 6, 1957 (September 6, 1957) Running time98 minutesCountryUnited StatesLanguageEnglishBudget$1,464,000[1]Box office$1,050,000[1]...

الاتحاد الجمركي الأورواسي أعضاء الاتحاد الجمركي الأورواسي المقر الرئيسي موسكو تاريخ التأسيس يناير 2010 النوع اتحاد جمركي انحياز سياسي الاتحاد الاقتصادي الأوراسي العضوية  أرمينيا بيلاروس كازاخستان قيرغيزستان روسيا عدد الأعضاء 5 الموقع الرسمي الموقع الرسمي ت...

 

 

Peilantenne in einem Waldstück auf Bramberg in Luzern, Schweiz Funkpeilung (englisch – radio direction-finding) ist – entsprechend Artikel 1.12 der Vollzugsordnung für den Funkdienst (VO Funk) der Internationalen Fernmeldeunion (ITU) – definiert als „Funkortung, die den Empfang von Funkwellen zur Bestimmung der Richtung benutzt, in der sich eine Funkstelle oder ein Gegenstand befindet“.[1] Peilfunkstellen verhalten sich rein passiv und werten nur Wellen aus, die an anderer...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!