Heptagonal triangle

  Regular heptagon
   Longer diagonals
  Shorter diagonals
Each of the fourteen congruent heptagonal triangles has one green side, one blue side, and one red side.

In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex). Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar (have the same shape), and so they are collectively known as the heptagonal triangle. Its angles have measures and and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.

Key points

The heptagonal triangle's nine-point center is also its first Brocard point.[1]: Propos. 12 

The second Brocard point lies on the nine-point circle.[2]: p. 19 

The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.[1]: Thm. 22 

The distance between the circumcenter O and the orthocenter H is given by[2]: p. 19 

where R is the circumradius. The squared distance from the incenter I to the orthocenter is[2]: p. 19 

where r is the inradius.

The two tangents from the orthocenter to the circumcircle are mutually perpendicular.[2]: p. 19 

Relations of distances

Sides

The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy[3]: Lemma 1 

(the latter[2]: p. 13  being the optic equation) and hence

and[3]: Coro. 2 

Thus –b/c, c/a, and a/b all satisfy the cubic equation

However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.

The approximate relation of the sides is

We also have[4][5]

satisfy the cubic equation

We also have[4]

satisfy the cubic equation

We also have[4]

satisfy the cubic equation

We also have[2]: p. 14 

and[2]: p. 15 

We also have[4]

Altitudes

The altitudes ha, hb, and hc satisfy

[2]: p. 13 

and

[2]: p. 14 

The altitude from side b (opposite angle B) is half the internal angle bisector of A:[2]: p. 19 

Here angle A is the smallest angle, and B is the second smallest.

Internal angle bisectors

We have these properties of the internal angle bisectors and of angles A, B, and C respectively:[2]: p. 16 

Circumradius, inradius, and exradius

The triangle's area is[6]

where R is the triangle's circumradius.

We have[2]: p. 12 

We also have[7]

The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation[6]

In addition,[2]: p. 15 

We also have[7]

In general for all integer n,

where

and

We also have[7]

We also have[4]

The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.[2]: p. 15 

Orthic triangle

The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).[2]: pp. 12–13 

Hyperbola

The rectangular hyperbola through has the following properties:

  • first focus
  • center is on Euler circle (general property) and on circle
  • second focus is on the circumcircle

Trigonometric properties

Trigonometric identities

The various trigonometric identities associated with the heptagonal triangle include these:[2]: pp. 13–14 [6][7]

[4]: Proposition 10 

[7][8]

[4]

[4]

[9]

Cubic polynomials

The cubic equation has solutions[2]: p. 14 

The positive solution of the cubic equation equals [10]: p. 186–187 

The roots of the cubic equation are[4]

The roots of the cubic equation are

The roots of the cubic equation are

The roots of the cubic equation are

The roots of the cubic equation are

Sequences

For an integer n, let

Value of n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ramanujan identities

We also have Ramanujan type identities,[7][11]

[9]

References

  1. ^ a b Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148.
  2. ^ a b c d e f g h i j k l m n o p q Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574.
  3. ^ a b Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256.
  4. ^ a b c d e f g h i Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38.
  5. ^ Wang, Kai (August 2019). "On cubic equations with zero sums of cubic roots of roots" – via ResearchGate.
  6. ^ a b c Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02.
  7. ^ a b c d e f Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate.
  8. ^ Moll, Victor H. (2007-09-24). "An elementary trigonometric equation". arXiv:0709.3755 [math.NT].
  9. ^ a b Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate.
  10. ^ Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. JSTOR 2323624. Archived from the original (PDF) on 2015-12-19.
  11. ^ Witula, Roman; Slota, Damian (2007). "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7" (PDF). Journal of Integer Sequences. 10 (5) 07.5.6. Bibcode:2007JIntS..10...56W.

Read other articles:

Коммунистическая партия Венесуэлыисп. Partido Comunista de VenezuelaКПВ / PCV Лидер Оскар Фигера (Генеральный секретарь) Основана 5 марта 1931 года Штаб-квартира Каракас Страна  Венесуэла Идеология коммунизм, марксизм-ленинизм Интернационал Форум Сан-Паулу[1]Международный комм...

 

American writer Susan EisenhowerEisenhower in 2009BornSusan Elaine Eisenhower (1951-12-31) December 31, 1951 (age 71)Political partyRepublican (before 2008) Independent (2008–present)[citation needed]Spouses Alexander H. Bradshaw (m. c. 1973; div. c. 1980) John Mahon (m. 1980; div. 1983) Roald Sagdeev (m. 1991; div. 2007) Children3ParentJohn Eisenhower (father) Susan Elaine Eisenhower (born December 31, 1951)[1] is an American consultant, author, and expert ...

 

البلدان التي تبين نسبة السكان الذين يعانون من نقص التغذية (2006) سوء التغذية الحاد العالمي هو مقياس لحالة الغذائية للسكان غالباً ما يستخدم في حالات اللجوء التي طال أمدها. جنبا إلى جنب مع معدل الوفيات الخام، هو واحد من المؤشرات الأساسية لتقييم شدة أزمة إنسانية.[1] التعريف تق

2016 Bulgarian presidential election ← 2011 6 November 2016 (first round)13 November 2016 (second round) 2021 → Turnout56.28% (first round)50.44% (second round)   Nominee Rumen Radev Tsetska Tsacheva Party Independent (BSP) GERB Running mate Iliana Iotova Plamen Manushev Popular vote 2,063,032 1,256,485 Percentage 59.37% 36.16% Results by provinceRadev:   50-60%   60-70%   70-80% President before election Rosen Plevneliev GERB...

 

  لمعانٍ أخرى، طالع المجلس الأعلى للدولة (توضيح). المجلس الأعلى للدولة النوع التأسيس 5 أبريل 2016 النوع مجلس استشاري البلد ليبيا  القيادة رئيس مجلس الدولة محمد تكالة النائب الأول لرئيس مجلس الدولة محمد عبد النبي بقي النائب الثاني لرئيس مجلس الدولة صفوان محمد المسوري مق

 

South African World War II flying ace For other people named John Frost, see John Frost (disambiguation). John Everitt FrostMajor John Frost (centre), commander of No. 5 Squadron, sitting between two of his most experienced pilots, Lieutenant Robin Pare (left) and Captain Andrew Duncan, Egypt, March/April 1942. All three were missing or killed in action by the end of June.Nickname(s)JackBorn(1918-07-16)16 July 1918Queenstown, Eastern Cape, South AfricaDied16 June 1942(1942-06-16) (aged 2...

Pemandangan Jalan Letnan Jenderal Suprapto dari jembatan penyeberangan orang menuju Halte Transjakarta Cempaka Timur. Jalur cepat dari Jalan Letjen Suprapto. Sepeda motor, bus, truk, dan sepeda harus berada di jalur lambat yang berada di kiri foto. Monumen Perjuangan Senen yang terletak di depan Stasiun Pasar Senen yang terletak di Jalan Letnan Jenderal Suprapto. Jalan Letnan Jenderal Suprapto adalah nama salah satu jalan utama Jakarta. Nama jalan ini diambil dari nama salah satu pahlawan rev...

 

NFL team season 2000 St. Louis Rams seasonOwnerGeorgia FrontiereGeneral managerMike Martz and Charley ArmeyHead coachMike MartzOffensive coordinatorBobby JacksonDefensive coordinatorPeter GiuntaHome fieldTrans World DomeResultsRecord10–6Division place2nd NFC WestPlayoff finishLost Wild Card Playoffs(at Saints) 28–31Pro BowlersQB Kurt WarnerRB Marshall FaulkWR Isaac BruceT Orlando PaceWR Torry Holt ← 1999 Rams seasons 2001 → The 2000 season was the St. Louis Rams...

 

Carrow RoadInformasi stadionNama lengkapCarrow RoadLokasiLokasiCarrow RoadNorwich NR1 1JE  InggrisKonstruksiDibuat1935Dibuka1935Data teknisKapasitas27,033Ukuran lapangan114 x 74 yardsPemakaiNorwich City F.C. Carrow Road merupakan sebuah stadion sepak bola di Norwich, Britania Raya. Stadion ini dibangun pada tahun 1935. Kapasitas 27.033 kursi.[1] Stadion ini merupakan markas klub Norwich City F.C.. Rujukan ^ Norwich City Club profile. premierleague.com. Diarsipkan dari versi asli ...

Statue von Hendrik Hamel Hendrik Hamel (* 1630 in Gorinchem; † 12. Februar 1692 in Gorinchem) war ein niederländischer Seefahrer, der nach einem Schiffbruch als erster Europäer über das Königreich Korea der Joseon-Dynastie berichtete. Leben Hamelhuis Im Jahr 1653 war Hendrik Hamel Buchhalter der Niederländischen Ostindien-Kompanie (VOC) auf dem Schiff De Sperwer (Der Sperber), das auf dem Weg nach Japan mit 64 Mann Besatzung bei der Insel Jejudo Schiffbruch erlitt. Die 36 Überlebenden...

 

Amélie Suard (1750–1830) Amélie Suard née Panckoucke di Lille pada 12 Mei 1743 dan meninggal di Paris pada 24 Oktober 1830[1] merupakan seorang penulis dan salonnière Prancis. Surat-suratnya memberikan informasi yang berharga tentang kehidupan di Prancis sebelum revolusi pada 1789. Keluarga Suard tetap setia kepada rezim Bourbon dan mengalami kesulitan selama tahun-tahun revolusioner, tetapi melanjutkan salon mereka pada 1800 di bawah Napoleon Bonaparte. Penerbitan Amélie Suard...

 

Kings County District Attorney of BrooklynIncumbentEric GonzalezTypeDistrict AttorneyTerm length4 yearsFormationFebruary 12, 1796First holderNathaniel Lawrence The Kings County District Attorney's Office, also known as the Brooklyn District Attorney's Office, is the district attorney's office for Kings County, coterminous with the Borough of Brooklyn, in New York City. The office is responsible for the prosecution of violations of the laws of New York. (Violations of federal law are prosecute...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2017. SMK Negeri 1 Bandar LampungInformasiDidirikan1957[1]JenisNegeriAkreditasiANomor Statistik Sekolah401126005002Nomor Pokok Sekolah Nasional10807229Kepala SekolahDra. Helmiyati, M.M.Jumlah kelas30 kelasJurusan atau peminatan • TKJ ...

 

Ruling monarch of the Kingdom of Jerusalem in the Middle Ages King of JerusalemRoyal coat of arms(1280s)DetailsFirst monarchGodfrey of BouillonLast monarchHenry IIFormation1099Abolition1291ResidenceDavid's TowerAppointerHereditaryElectionPretender(s)Claimants Part of a series onJerusalem History Timeline City of David Second Temple Period Aelia Capitolina Middle Ages Early Muslim period Kingdom of Jerusalem Mutasarrifate British Mandate Israeli takeover of West Jerusalem Jordanian a...

 

斯坦尼斯瓦夫·卡尼亞 斯坦尼斯瓦夫·卡尼亞(Stanisław Kania;1927年3月8日—2020年3月3日)是波兰统一工人党的一个政治家[1]。卡尼亞1945年加入波兰统一工人党。他在1980年至1981年间曾担任波兰统一工人党第一书记,接替因团结工会兴起而下台的爱德华·盖莱克。卡尼亞卸任之后,沃伊切赫·雅鲁泽尔斯基接替其职位。2012年,他曾因在1981年戒严中参与镇压而被起诉,但最...

King of Anuradhapura ThulatthanaKing of AnuradhapuraReign119 BCPredecessorSaddha TissaSuccessorLanja TissaDynastyHouse of VijayaFatherSaddha TissaReligionTheravāda Buddhism Thulatthana was an early monarch of the Kingdom of Anuradhapura, based at the ancient capital of Anuradhapura that ruled in the year 119 BC. Thulatthana was the son of Saddha Tissa and the brother of Lanja Tissa, Tissa Balambaba, Naga Mahagabaga, Anuddadedad, Gambamagoomba, Boogomabonga,[1]Khallata Naga and V...

 

Iranian actress (born 1997) Sadaf Asgariصدف عسگریAsgari at the 2019 Fajr Film FestivalBorn (1997-09-27) September 27, 1997 (age 26)Tehran, IranNationalityIranianOccupationActressYears active2017–present Sadaf Asgari (Persian: صدف عسگری; born (1997-09-27)September 27, 1997) is an Iranian actress.[1][2][3][4] She is best known for her acting in Disappearance (2017), Yalda, a Night for Forgiveness (2019) and Squad of Girls (2022).[5...

 

Mapa sa Italya nga nagpakita kon asa nahimutang ang rehiyon sa Calabria Eskudo sa Calabria Ang Calabria nga gitawag sa niadtong panahon nga Bruttium maoy usa sa kaluhaan (20) ka rehiyon sa nasod sa Italya. Nahimutang kini sa habagatang dapit sa Italya. Ang dakbayan sa Catanzaro maoy ulohan sa rehiyon Mga pagbahinbahin sa pagdumala Ang Calabria nabahin ngadto sa lima (5) ka lalawigan: Mga lalawigan sa Calabria. Lalawigan Arya (km²) Populasyon Densidad (molupyo/km²) Catanzaro 2,391 367,976 15...

Prathap C. ReddyPresiden, Shamat. Pratibha Devisingh Patil Pemberian Padma Vibhushan Award kepada Dr. Pratap Chandra Reddy, 2010LahirPrathap Chandra Reddy1933 (umur 89–90)Aragonda, Kepresidenan Madras, India Britania, (sekarang distrik Chittoor, Andhra Pradesh, India)AlmamaterStanley Medical College, Chennai Madras Christian College, ChennaiPekerjaanDokter, eksekutif bisnisPenghargaanPadma Vibhushan (2010)Padma Bhushan (1991) Prathap Chandra Reddy (lahir 5 Februari 1933)[1]...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Federal Institute of Pernambuco – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this template message) Instituto Federal de Educação, Ciência e Tecnologia de PernambucoTypePublicEstablished1909RectorJosé Carlos de Sá...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!