Green–Tao theorem

In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number , there exist arithmetic progressions of primes with terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.[1]

Statement

Let denote the number of primes less than or equal to . If is a subset of the prime numbers such that

then for all positive integers , the set contains infinitely many arithmetic progressions of length . In particular, the entire set of prime numbers contains arbitrarily long arithmetic progressions.

In their later work on the generalized Hardy–Littlewood conjecture, Green and Tao stated and conditionally proved the asymptotic formula

for the number of k tuples of primes in arithmetic progression.[2] Here, is the constant

The result was made unconditional by Green–Tao[3] and Green–Tao–Ziegler.[4]

Overview of the proof

Green and Tao's proof has three main components:

  1. Szemerédi's theorem, which asserts that subsets of the integers with positive upper density have arbitrarily long arithmetic progressions. It does not a priori apply to the primes because the primes have density zero in the integers.
  2. A transference principle that extends Szemerédi's theorem to subsets of the integers which are pseudorandom in a suitable sense. Such a result is now called a relative Szemerédi theorem.
  3. A pseudorandom subset of the integers containing the primes as a dense subset. To construct this set, Green and Tao used ideas from Goldston, Pintz, and Yıldırım's work on prime gaps.[5] Once the pseudorandomness of the set is established, the transference principle may be applied, completing the proof.

Numerous simplifications to the argument in the original paper[1] have been found. Conlon, Fox & Zhao (2014) provide a modern exposition of the proof.

Numerical work

The proof of the Green–Tao theorem does not show how to find the arithmetic progressions of primes; it merely proves they exist. There has been separate computational work to find large arithmetic progressions in the primes.

The Green–Tao paper states 'At the time of writing the longest known arithmetic progression of primes is of length 23, and was found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling: 56211383760397 + 44546738095860 · k; k = 0, 1, . . ., 22.'.

On January 18, 2007, Jarosław Wróblewski found the first known case of 24 primes in arithmetic progression:[6]

468,395,662,504,823 + 205,619 · 223,092,870 · n, for n = 0 to 23.

The constant 223,092,870 here is the product of the prime numbers up to 23, more compactly written 23# in primorial notation.

On May 17, 2008, Wróblewski and Raanan Chermoni found the first known case of 25 primes:

6,171,054,912,832,631 + 366,384 · 23# · n, for n = 0 to 24.

On April 12, 2010, Benoît Perichon with software by Wróblewski and Geoff Reynolds in a distributed PrimeGrid project found the first known case of 26 primes (sequence A204189 in the OEIS):

43,142,746,595,714,191 + 23,681,770 · 23# · n, for n = 0 to 25.

In September 2019 Rob Gahan and PrimeGrid found the first known case of 27 primes (sequence A327760 in the OEIS):

224,584,605,939,537,911 + 81,292,139 · 23# · n, for n = 0 to 26.

Extensions and generalizations

Many of the extensions of Szemerédi's theorem hold for the primes as well.

Independently, Tao and Ziegler[7] and Cook, Magyar, and Titichetrakun[8][9] derived a multidimensional generalization of the Green–Tao theorem. The Tao–Ziegler proof was also simplified by Fox and Zhao.[10]

In 2006, Tao and Ziegler extended the Green–Tao theorem to cover polynomial progressions.[11][12] More precisely, given any integer-valued polynomials in one unknown all with constant term 0, there are infinitely many integers such that , xare simultaneously prime. The special case when the polynomials are implies the previous result that there arithmetic progressions of primes of length .

Tao proved an analogue of the Green–Tao theorem for the Gaussian primes.[13]

See also

References

  1. ^ a b Green, Ben; Tao, Terence (2008). "The primes contain arbitrarily long arithmetic progressions". Annals of Mathematics. 167 (2): 481–547. arXiv:math.NT/0404188. doi:10.4007/annals.2008.167.481. MR 2415379. S2CID 1883951..
  2. ^ Green, Ben; Tao, Terence (2010). "Linear equations in primes". Annals of Mathematics. 171 (3): 1753–1850. arXiv:math/0606088. doi:10.4007/annals.2010.171.1753. MR 2680398. S2CID 119596965.
  3. ^ Green, Ben; Tao, Terence (2012). "The Möbius function is strongly orthogonal to nilsequences". Annals of Mathematics. 175 (2): 541–566. arXiv:0807.1736. doi:10.4007/annals.2012.175.2.3. MR 2877066.
  4. ^ Green, Ben; Tao, Terence; Ziegler, Tamar (2012). "An inverse theorem for the Gowers -norm". Annals of Mathematics. 172 (2): 1231–1372. arXiv:1009.3998. doi:10.4007/annals.2012.176.2.11. MR 2950773.
  5. ^ Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. (2009). "Primes in tuples. I". Annals of Mathematics. 170 (2): 819–862. arXiv:math/0508185. doi:10.4007/annals.2009.170.819. MR 2552109. S2CID 1994756.
  6. ^ Andersen, Jens Kruse. "Primes in Arithmetic Progression Records". Retrieved 2015-06-27.
  7. ^ Tao, Terence; Ziegler, Tamar (2015). "A multi-dimensional Szemerédi theorem for the primes via a correspondence principle". Israel Journal of Mathematics. 207 (1): 203–228. arXiv:1306.2886. doi:10.1007/s11856-015-1157-9. MR 3358045. S2CID 119685169.
  8. ^ Cook, Brian; Magyar, Ákos (2012). "Constellations in ". International Mathematics Research Notices. 2012 (12): 2794–2816. doi:10.1093/imrn/rnr127. MR 2942710.
  9. ^ Cook, Brian; Magyar, Ákos; Titichetrakun, Tatchai (2018). "A Multidimensional Szemerédi Theorem in the primes via Combinatorics". Annals of Combinatorics. 22 (4): 711–768. arXiv:1306.3025. doi:10.1007/s00026-018-0402-4. S2CID 126417608.
  10. ^ Fox, Jacob; Zhao, Yufei (2015). "A short proof of the multidimensional Szemerédi theorem in the primes". American Journal of Mathematics. 137 (4): 1139–1145. arXiv:1307.4679. doi:10.1353/ajm.2015.0028. MR 3372317. S2CID 17336496.
  11. ^ Tao, Terence; Ziegler, Tamar (2008). "The primes contain arbitrarily long polynomial progressions". Acta Mathematica. 201 (2): 213–305. arXiv:math/0610050. doi:10.1007/s11511-008-0032-5. MR 2461509. S2CID 119138411.
  12. ^ Tao, Terence; Ziegler, Tamar (2013). "Erratum to "The primes contain arbitrarily long polynomial progressions"". Acta Mathematica. 210 (2): 403–404. doi:10.1007/s11511-013-0097-7. MR 3070570.
  13. ^ Tao, Terence (2006). "The Gaussian primes contain arbitrarily shaped constellations". Journal d'Analyse Mathématique. 99 (1): 109–176. arXiv:math/0501314. doi:10.1007/BF02789444. MR 2279549. S2CID 119664036.

Further reading

Read other articles:

Bellême Gemeente in Frankrijk Situering Regio Normandië Departement Orne (61) Arrondissement Mortagne-au-Perche Kanton Ceton Coördinaten 48° 22′ NB, 0° 34′ OL Algemeen Oppervlakte 1,71 km² Inwoners (1 januari 2020) 1.455[1] (851 inw./km²) Hoogte 162 - 230 m Overig Postcode 61130 INSEE-code 61038 Foto's Portaal    Frankrijk Bellême is een gemeente in het Franse departement Orne (regio Normandië) en telt 1774 inwoners (1999). De plaats maakt deel uit van h...

 

Atlanta Jewish Film Festival (AJFF)LocationAtlanta, Georgia, United StatesFounded2000Founded byAmerican Jewish CommitteeArtistic directorKenny BlankWebsitewww.ajff.org The Atlanta Jewish Film Festival is the largest film festival of any kind in the state of Georgia and is the largest Jewish film festival in the world. The 23-day festival is held in late winter at multiple venues in Atlanta, Georgia and in the suburbs of Alpharetta, Marietta and Sandy Springs. Contemporary and classic independ...

 

Inventor dan pengusaha Amerika Serikat Thomas Edison mendirikan pembangkit listrik milik investor pertama pada 1882, mendasarkan insfrastrukturnya pada tenaga diesel. Wirausahawan dan insinyur Amerika Serikat George Westinghouse memperkenalkan jaringan distribusi tenaga listrik berbasis AC pesaing pada 1886. Perang arus (terkadang disebut pertempuran arus) adalah serangkaian peristiwa menjelang pengenalan sistem transmisi tenaga listrik pada akhir 1880-an dan awal 1890-an. Peristiwa tersebut ...

Peta menunjukkan lokasi Cawayan Cawayan adalah munisipalitas yang terletak di provinsi Masbate, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 59.658 jiwa dan 12.783 rumah tangga. Pembagian wilayah Secara administratif Cawayan terbagi menjadi 37 barangay, yaitu: Begia Cabayugan Cabungahan Calapayan Calumpang Dalipe Divisoria Guiom Gilotongan Itombato Libertad Looc Mactan Madbad R.M. Magbalon (Bebihan) Mahayahay Maihao Malbug Naro Pananawan Poblacion Pulot Recodo San Jo...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Toksin simpul gandaIdentifiersOrganismeCyriopagopus schmidtiSimbolDkTxPDB5IRXUniProtP0CH43PencarianStrukturSwiss-modelDomainInterPro Toksin simpul ganda (double-knot toxin, DkTx), juga dikenal sebagai Tau-theraphotoxin-Hs1a atau Tau-TRTX-Hs1a, adalah racun yang ditemukan dalam racun laba-laba Burung Cina (Ornithoctonus huwena atau Cyriopagopus schmidti), spesies tarantula yang terutama hidup di Provinsi Guangxi, Tiongkok. Toksin ini, yang dicirikan oleh struktur bivalen dari dua Simpul pengha...

American writer and television personality Ross JeffriesBornPaul Jeffrey Ross1958 or 1959 (age 64–65)NationalityAmericanOccupation(s)Writer, author, life coach, seduction guru Paul Jeffrey Ross[1] (born 1958 or 1959 (age 64–65))[2] known by the pseudonym Ross Jeffries,[3] is an American author and pick-up artist. Neil Strauss, in his 2005 book The Game, describes Jeffries as the godfather of the modern pick-up artist community.[...

 

Academy in Fakenham, Norfolk, EnglandFakenham Academy Norfolk and Fakenham Sixth FormLocationFakenham, NorfolkEnglandCoordinates52°50′27″N 0°50′39″E / 52.8407°N 0.8443°E / 52.8407; 0.8443InformationTypeAcademyEstablished1959TrustSapentia Education TrustDepartment for Education URN139572 TablesOfstedReportsHead TeacherGavin GreenGenderCoeducationalAge11 to 19Enrollment781Capacity750Websitefakenhamacademynorfolk.org The Fakenham Academy (formerly Fakenham...

 

Number of minor planets and comets visited by spacecraft The following tables list all minor planets and comets that have been visited by robotic spacecraft. List of minor planets visited by spacecraft A total of 18 minor planets (asteroids, dwarf planets, and Kuiper belt objects) have been visited by space probes. Moons (not directly orbiting the Sun) and planets are not minor planets and thus are not included in the table below. Minor planets and comets visited by spacecraft as of 2019 (exc...

Juegos Centroamericanos y del Caribe 2023 XXIV Juegos Centroamericanos y del Caribe Localización San Salvador El SalvadorEventos 433[1]​Lema Es momento de trascender[2]​CeremoniasApertura 23 de junio de 2023Clausura 8 de julio de 2023Inaugurado por Nayib BukeleEstadio olímpico Estadio Nacional Jorge «El Mágico» GonzálezCronología Barranquilla 2018 Santo Domingo 2026 [editar datos en Wikidata] Los Juegos Centroamericanos y del Caribe de 2023, oficialmente...

 

École supérieure de commerce de LilleÉcole supérieure de commerce de LilleHistoireFondation 1892Dissolution 2009StatutType Établissement privé d'enseignement supérieurNom officiel École supérieure de commerce de Lille (1892)ESC Lille - Graduate school of Management (1999)SKEMA Business School (2009)Devise « Your future - our ambition »Membre de École centrale de LilleSite web www.skema-bs.fr/frLocalisationPays FranceVille Lille, ParisLocalisation sur la carte de FranceLo...

 

Publisher based in the United Kingdom Not to be confused with Policy Press. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of...

Gaelic games governing body in the UK Gloucestershire GAAIrish:'Nickname(s):The WesternersThe ExilesProvince:BritainDominant sport:Gaelic footballGround(s):Cardiff Gaelic Club& St Mary's Old Boys RFC, AlmondsburyCounty colours:  Gold   Green Regular kit Gloucestershire within England The Gloucestershire County Board of the Gaelic Athletic Association (GAA) (Irish: Cumann Lúthchleas Gael Coiste Chontae Gloucester) or Gloucester GAA, is one of the county boards outside Ireland an...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Capital Cargo International Airlines – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this template message) Capital Cargo International Airlines IATA ICAO Callsign PT CCI CAPPY Founded1995Ceased operations2013Hubs Tol...

 

Our Lady of the Bekaa in Zahlé, Lebanon Our Lady of Zahle and the Bekaa (also spelled Beqaa) is a Marian shrine located in the city of Zahlé in the Beqaa Valley of Lebanon. In 1958, Bishop Euthym, a man of great devotion to Our Lady, decided to build a shrine in honor of the Virgin Mary on the top of a hill overlooking Zahle and the Bekaa Valley.[1] A ten-meter-high bronze statue of the Virgin Mary, the work of the Italian artist, Pierroti, rests on a 54 meter high tower, crowning a...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة م...

 

Winnebago painter Angel De CoraAngel De CoraBornHinook-Mahiwi-Kalinaka(1871-05-03)May 3, 1871Thurston, NebraskaDiedFebruary 6, 1919(1919-02-06) (aged 47)Northampton, MassachusettsNationalityHo-ChunkKnown forPainting & IllustrationMovementTonalism Angel De Cora Dietz (1871–1919) was a Winnebago painter, illustrator, Native American rights advocate, and teacher at Carlisle Indian School. She was a well-known Native American artist before World War I.[1] Background Angel ...

 

Premier of Victoria from 2014 to 2023 The HonourableDaniel AndrewsAndrews in 201848th Premier of VictoriaIn office4 December 2014 – 27 September 2023MonarchsElizabeth IICharles IIIGovernorAlex ChernovLinda DessauMargaret GardnerDeputyJames MerlinoJacinta AllanPreceded byDenis NapthineSucceeded byJacinta Allan17th Leader of the Labor Party in VictoriaIn office3 December 2010 – 27 September 2023DeputyRob HullsJames MerlinoJacinta AllanPreceded byJohn BrumbySucceeded byJaci...

Groupe fortifié La MarneFeste Freiherr von der Goltz Description Ceinture fortifiée seconde ceinture fortifiée de Metz Type d’ouvrage fort de type Biehler (ouvrage à organes dispersés) Dates de construction 1907-1916 Dates de modernisation Garnison 800 hommes Armement 8 pièces d’artillerie(6 x 100 mm, 2 × 77 mm) Usage actuel désaffecté Protection néant Coordonnées 49° 05′ 15,4″ nord, 6° 15′ 22,07″ est Géolo...

 

American politician Melissa BallardMember of the Utah House of Representativesfrom the 20th districtIncumbentAssumed office January 1, 2019Preceded byBecky Edwards Personal detailsBornMelissa GarffDavis County, Utah, U.S.Political partyRepublicanSpouseCraig BallardChildren6RelativesRobert H. Garff (father)M. Russell Ballard(father-in-law)EducationUniversity of Utah (BM, MM) Melissa Garff Ballard is an American politician and music educator who has been serving as a member of t...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!