Good Housekeeping
|
Read other articles:
Talégalo de Wallace Estado de conservaciónVulnerable (UICN 3.1)[1]TaxonomíaReino: AnimaliaFilo: ChordataClase: AvesOrden: GalliformesFamilia: MegapodiidaeGénero: EulipoaOgilvie-Grant, 1893Especie: E. wallacei(Gray, 1861)[editar datos en Wikidata] El talégalo de Wallace[2] o telégala de las Molucas (Eulipoa wallacei sin. Megapodius wallacei) es una especie de ave galliforme de la familia Megapodiidae, el único representante del género Eulipoa. Distri...
اضغط هنا للاطلاع على كيفية قراءة التصنيف الطائر عريض المنقار الأسود والأصفر حالة الحفظ أنواع قريبة من خطر الانقراض[1] المرتبة التصنيفية نوع[2][3] التصنيف العلمي المملكة: حيوانات الشعبة: حبليات الرتبة: عصفوريات الأسرة: طائر عريض المنقار الجنس: Eurylaimus النوع: E. ochr...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2019) سامانثا ووماك معلومات شخصية الميلاد 2 نوفمبر 1972 (51 سنة)[1] برايتون الإقامة توردويا مواطنة المملكة المتحدة الزوج مارك وماك (2009–) عدد ال...
?Gekko nutaphandi Охоронний статус Найменший ризик (МСОП 3.1)[1] Біологічна класифікація Домен: Ядерні (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Плазуни (Reptilia) Ряд: Лускаті (Squamata) Підряд: Ящірки (Lacertilia) Родина: Геконові (Gekkonidae) Рід: Gekko Вид: G. nutaphandi Біноміальна назва Gek...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) قصور باري
CekpremiLogo CekpremiSloganCek Asuransi Terbaikmu!Detail InformasiNegaraIndonesiaPemilikPT Cekpremi Mitra PratamaSitus Web Resmicekpremi.comKomersilYaJenis SitusTransaksi Online / electronic, Media Informasi, Jasa PembandingPeringkat Alexa Global1,321,192 (pada Desember 2014)[1]Peringkat Alexa Indonesia25,474 (pada Desember 2014)[1]Status Saat IniAktifAlamatRuko Icon 21 Blok B No. 17 Jalan Meruya Ilir Raya, Jakarta Barat 11620[2]Telepon021 - 5051 7000lbs Cekpremi.com a...
US 1800 government report The cover of a book containing the Virginia and Kentucky Resolutions along with the Report of 1800 and other supporting documents. This edition was produced by editor Jonathan Elliot in 1832 at the height of the nullification crisis. These documents formed the philosophical foundation for the nullification movement. The Report of 1800 was a resolution drafted by James Madison arguing for the sovereignty of the individual states under the United States Constitution an...
Protein-coding gene in the species Homo sapiens PGLYRP1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1YCKIdentifiersAliasesPGLYRP1, PGLYRP, PGRP, PGRP-S, PGRPS, TAG7, TNFSF3L, peptidoglycan recognition protein 1External IDsOMIM: 604963 MGI: 1345092 HomoloGene: 74539 GeneCards: PGLYRP1 Gene location (Human)Chr.Chromosome 19 (human)[1]Band19q13.32Start46,019,153 bp[1]End46,023,053 bp[1]Gene location (Mouse)Chr.Chromosome 7 (mouse)[2]Band7&...
The Church of Jesus Christ of Latter-day Saints in ZimbabweAreaAfrica SouthMembers38,289 (2022)[1]Stakes8Districts2Wards49Branches42Total Congregations[2]91Missions2Temples1 Under ConstructionFamily History Centers18[3] The Church of Jesus Christ of Latter-day Saints in Zimbabwe refers to the Church of Jesus Christ of Latter-day Saints (LDS Church) and its members in Zimbabwe. In 1975, there were 689 members in Zimbabwe. In 2022, there were 38,289 members in 91 congreg...
Railway station in Amagasaki, Hyōgo Prefecture, Japan Tachibana Station立花駅Tachibana Station North exitGeneral informationLocation1-chōme-1 Tachibanachō, Amagasaki-shi, Hyōgo-ken 661-0025JapanCoordinates34°44′16.66″N 135°23′56.84″E / 34.7379611°N 135.3991222°E / 34.7379611; 135.3991222Owned by West Japan Railway CompanyOperated by West Japan Railway CompanyLine(s) Tōkaidō Main Line (JR Kobe Line)Distance567.1 km (352.4 mi) from TokyoPla...
For similarly named synagogues, see Emanu-El. Temple Emanuelבית המקדש עמנואלReligionAffiliationReform JudaismLeadershipRabbi Schadick,Rabbi LewisStatusActiveLocationLocation1715 Fulton St E, Grand Rapids, MI 49503 United StatesGeographic coordinates42°57′46″N 85°37′37″W / 42.962751°N 85.626896°W / 42.962751; -85.626896ArchitectureArchitect(s)Erich MendelsohnCompleted1952Websitegrtemple.org Burning Bush Sculpture by Calvin Albert Descripti...
Road in Kolkata, India College StreetBoi Para (Books Neighborhood)Book stores and tram tracks along College StreetNative nameকলেজ স্ট্রিট (Bengali)Maintained byKolkata Municipal CorporationLength0.9 km (0.56 mi)[1]LocationKolkata, IndiaPostal code700012, 700073Nearest Kolkata Metro stationMG Road, Central and SealdahCoordinates22°34′32″N 88°21′48″E / 22.575514°N 88.363354°E / 22.575514; 88.363354North endBid...
Book by Joan London For other novels, see Golden Age (disambiguation) § Literature. The Golden Age First editionAuthorJoan LondonCountryAustraliaLanguageEnglishGenreNovelPublisherVintage Books, AustraliaPublication date2014Media typePrint (Paperback)Pages242ISBN9781741666441Preceded byThe Good Parents The Golden Age (2014) is a novel by Australian author Joan London. Plot summary Frank and Elsa meet at a rehabilitation clinic in suburban Perth in the early 1950s. Both ha...
「環状七号線・環七・環七通り」はこの項目へ転送されています。青森県を通る「環7」と称する路線については「青森環状道路」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 東京都道318号環状七号線 – ニュー...
1993 single by John Michael Montgomery I Love the Way You Love MeSingle by John Michael Montgomeryfrom the album Life's a Dance ReleasedMarch 1, 1993 (1993-03-01)GenreCountryLength4:01LabelAtlanticSongwriter(s)Victoria Shaw, Chuck CannonProducer(s)Doug JohnsonJohn Michael Montgomery singles chronology Life's a Dance (1992) I Love the Way You Love Me (1993) Beer and Bones (1993) Music videoI Love the Way You Love Me on YouTube I Love the Way You Love Me is a song recorded by Ame...
1986 film directed by Lucio Fulci The Devil's HoneyItalian theatrical release poster by Studio LapisDirected byLucio FulciWritten by Jaime Jesús Balcázar Lucio Fulci Ludovica Marineo Sergio Partou Vincenzo Salviani Produced byFranco CasatiSergio MartinelliVincenzo SalvianiStarring Blanca Marsillach Brett Halsey Stefano Madia Corinne Cléry CinematographyAlejandro UlloaEdited byVincenzo TomassiMusic byClaudio NatiliDistributed bySelvaggia FilmRelease date 14 August 1986 (1986-...
Dinosaur footprint Caririchnium C. leonardii specimen from Dinosaur Ridge, Colorado Trace fossil classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Dinosauria Clade: †Ornithischia Clade: †Ornithopoda Ichnofamily: †Iguanodontipodidae Ichnogenus: †CaririchniumLeonardi, 1984 Caririchnium is an ichnogenus of ornithopod dinosaur footprint,[1] belonging to either derived iguanodonts or basal hadrosauroids.[2] It includes the species Caririchnium lotus...
Aplysina fistularis Klasifikasi ilmiah Kerajaan: Animalia Upakerajaan: Parazoa Filum: Porifera Kelas: Demospongiae Ordo: Verongida Famili: Aplysinidae Genus: Aplysina Spesies: Aplysina fistularis Aplysina fistularis adalah spesies spons yang tergolong dalam kelas Demospongiae. Spesies ini juga merupakan bagian dari genus Aplysina dan famili Aplysinidae. Nama ilmiah spesies ini pertama kali diterbitkan pada tahun 1766 oleh Pallas. Seperti spons pada umumnya, spesies ini memiliki tubuh yang ber...
Indonesian footballer In this Indonesian name, there is no family name nor a patronymic. Hariono Hariono addressing his farewell to Persib supporters at the Si Jalak Harupat Stadium in 2019Personal informationFull name HarionoDate of birth (1985-10-02) 2 October 1985 (age 38)Place of birth Sidoarjo, IndonesiaHeight 1.69 m (5 ft 6+1⁄2 in)[1]Position(s) Defensive midfielder[2]Team informationCurrent team PSIM YogyakartaNumber 28Youth career Deltras Sido...
Standard infinite broom In topology, a branch of mathematics, the infinite broom is a subset of the Euclidean plane that is used as an example distinguishing various notions of connectedness. The closed infinite broom is the closure of the infinite broom, and is also referred to as the broom space.[1] Definition The infinite broom is the subset of the Euclidean plane that consists of all closed line segments joining the origin to the point (1, 1/n) as n varies over all positive intege...