Glass electrode

A glass electrode is a type of ion-selective electrode made of a doped glass membrane that is sensitive to a specific ion. The most common application of ion-selective glass electrodes is for the measurement of pH. The pH electrode is an example of a glass electrode that is sensitive to hydrogen ions. Glass electrodes play an important part in the instrumentation for chemical analysis, and physicochemical studies. The voltage of the glass electrode, relative to some reference value, is sensitive to changes in the activity of a certain type of ions.

History

The first studies of glass electrodes (GE) found different sensitivities of different glasses to change the medium's acidity (pH), due to the effects of the alkali metal ions.

In 1906, M. Cremer, the father of Erika Cremer, determined that the electric potential that arises between parts of the fluid, located on opposite sides of the glass membrane is proportional to the concentration of acid (hydrogen ion concentration).[1]

In 1909, S. P. L. Sørensen introduced the concept of pH, and in the same year F. Haber and Z. Klemensiewicz reported results of their research on the glass electrode in The Society of Chemistry in Karlsruhe.[2][3] In 1922, W. S. Hughes showed that the alkali-silicate glass electrodes are similar to hydrogen electrodes, reversible concerning H+.[4]

In 1925, P. M. Tookey Kerridge developed the first glass electrode for analysis of blood samples and highlighted some of the practical problems with the equipment such as the high resistance of glass (50–150 MΩ).[5] During her PhD, Kerridge developed a glass electrode aimed to measure small volume of solution.[6] Her clever and careful design was a pioneering work in the making of glass electrodes.

Applications

Glass electrodes are commonly used for pH measurements. There are also specialized ion-sensitive glass electrodes used for the determination of the concentration of lithium, sodium, ammonium, and other ions.

Glass electrodes find a wide diversity of uses in a large range of applications including research labs, control of industrial processes, analysis of foods and cosmetics, monitoring of environmental pollution, or soil acidity measurements... . Micro-electrodes are specifically designed for pH measurements on very small volumes of fluid, or for direct measurements in geochemical micro-environments, or in biochemical studies such as for determining the electrical potential of cell membrane.

Heavy duty electrodes withstanding several tens of bar of hydraulic pressure also allow measurements in water wells in deep aquifers, or to directly determine in situ the pH of pore water in deep clay formations.[7] For long-term in situ measurements, it is critical to minimize the KCl leak from the reference electrode compartment (Ag / AgCl / KCl 3 M), and to use glycerol-free electrodes[8] to avoid fuelling microbial growth, and to prevent unexpected but severe perturbations related to bacterial activity (pH decrease due to sulfate-reducing bacteria, or even methanogen bacteria).[9][7][8]

Types

All commercial electrodes respond to single-charged ions, such as H+, Na+, Ag+. The most common glass electrode is the pH-electrode. Only a few chalcogenide glass electrodes are presently known to be sensitive to double-charged ions, such as Pb2+, Cd2+, and some other divalent cations.[citation needed]

There are two main types of glass-forming systems:[citation needed]

  1. The most common one: a silicate matrix based on an amorphous molecular network of silicon dioxide (SiO2, the network former) with additions of other metal oxides (network modifiers), such as Na, K, Li, Al, B, Ca..., and;
  2. A less used one: a chalcogenide matrix based on a molecular network of AsS, AsSe, or AsTe.[citation needed]

Interfering ions

A silver chloride reference electrode (left) and glass pH electrode (right)

Because of the ion-exchange nature of the glass membrane, it is possible for some other ions to concurrently interact with ion-exchange sites of the glass, and distort the linear dependence of the measured electrode potential on pH or other electrode functions. In some cases, it is possible to change the electrode function from one ion to another. For example, some silicate pPNA[clarification needed] electrodes can be changed to pAg function by soaking in a silver salt solution.

Interference effects are commonly described by the semi-empirical Nicolsky-Shultz-Eisenman equation (also known as Nikolsky-Shultz-Eisenman equation),[10][11] an extension to the Nernst equation. It is given by:

where E is the electromotive force (emf), E0 the standard electrode potential, z the ionic valency including the sign, a the activity, i the ion of interest, j the interfering ions and kij is the selectivity coefficient quantifying the ion-exchange equilibrium between the ions i and j. The smaller the selectivity coefficient, the less is the interference by j.

To see the interfering effect of Na+ to a pH-electrode:

Range of a pH glass electrode

The pH range at constant concentration can be divided into 3 parts:

Scheme of the typical dependence E (Volt) – pH for glass electrode.[citation needed]

where F is Faraday's constant (see Nernst equation).[12]

  • Alkali error range – at low concentration of hydrogen ions (high values of pH) contributions of interfering alkali metals ions (such as Li+, Na+, K+) are comparable with one of the hydrogen ions. In this situation dependence of the potential on pH become non-linear.

The effect is usually noticeable at pH > 12, and at concentrations of lithium or sodium ions of 0.1  mol/L or more. Potassium ions usually cause less error than sodium ions.

  • Acidic error range – at a very high concentration of hydrogen ions (low values of pH) the dependence of the electrode on pH becomes non-linear, and the influence of the anions in the solution also becomes noticeable. These effects usually become noticeable at pH < -1.[citation needed]

Special electrodes exist for working in extreme pH ranges.

Construction

Scheme of typical pH glass electrode.

A typical modern pH probe is a combination electrode, which combines both the glass and reference electrodes into one body. The combination electrode consists of the following parts (see the drawing):

  1. A sensing part of electrode, a bulb made from a specific glass.
  2. Internal electrode, usually silver chloride electrode or calomel electrode.
  3. Internal solution, usually a pH=7 buffered solution of 0.1 mol/L KCl for pH electrodes or 0.1 mol/L MCl for pM electrodes.
  4. When using the silver chloride electrode, a small amount of AgCl can precipitate inside the glass electrode.
  5. Reference electrode, usually the same type as 2.
  6. Reference internal solution, usually 3.0 mol/L KCl.
  7. Junction with studied solution, usually made from ceramics or capillary with asbestos or quartz fiber.
  8. Body of electrode, made from non-conductive glass or plastics.

The bottom of a pH electrode balloons out into a round thin glass bulb. The pH electrode is best thought of as a tube within a tube. The inner tube contains an unchanging 1×10−7 mol/L HCl solution. Also inside the inner tube is the cathode terminus of the reference probe. The anodic terminus wraps itself around the outside of the inner tube and ends with the same sort of reference probe as was on the inside of the inner tube. It is filled with a reference solution of KCl and has contact with the solution on the outside of the pH probe by way of a porous plug that serves as a salt bridge.

Galvanic cell schematic representation

This section describes the functioning of two distinct types of electrodes as one unit which combines both the glass electrode and the reference electrode into one body. It deserves some explanation.

This device is essentially a galvanic cell that can be schematically represented as:

Internal electrode | Internal buffer solution || Test Solution || Reference solution | Reference electrode
Ag(s) | AgCl(s) | 0.1 M KCl(aq), 1×10−7M H+ solution || Test Solution || KCl(aq) | AgCl(s) | Ag(s)

The double "pipe symbols" (||) indicate diffusive barriers – the glass membrane and the ceramic junction. The barriers prevent (glass membrane), or slow down (ceramic junction), the mixing of the different solutions.

In this schematic representation of the galvanic cell, one will note the symmetry between the left and the right members as seen from the center of the row occupied by the "Test Solution" (the solution whose pH must be measured). In other words, the glass membrane and the ceramic junction occupy both the same relative places in each electrode. By using the same electrodes on the left and right, any potentials generated at the interfaces cancel each other (in principle), resulting in the system voltage being dependent only on the interaction of the glass membrane and the test solution.

The measuring part of the electrode, the glass bulb on the bottom, is coated both inside and out with a ~10 nm layer of a hydrated gel. These two layers are separated by a layer of dry glass. The silica glass structure (that is, the conformation of its atomic structure) is shaped so that it allows Na+ ions some mobility. The metal cations (Na+) in the hydrated gel diffuse out of the glass and into solution while H+ from solution can diffuse into the hydrated gel. It is the hydrated gel which makes the pH electrode an ion-selective electrode.

H+ does not cross through the glass membrane of the pH electrode, it is the Na+ which crosses and leads to a change in free energy. When an ion diffuses from a region of activity to another region of activity, there is a free energy change and this is what the pH meter actually measures. The hydrated gel membrane is connected by Na+ transport and thus the concentration of H+ on the outside of the membrane is 'relayed' to the inside of the membrane by Na+.

All glass pH electrodes have extremely high electric resistance from 50 to 500 MΩ. Therefore, the glass electrode can be used only with a high input-impedance measuring device like a pH meter, or, more generically, a high input-impedance voltmeter which is called an electrometer.

Limitations

The glass electrode has some inherent limitations due to the nature of its construction. Acid and alkaline errors are discussed above. An important limitation results from the existence of asymmetry potentials that are present at glass/liquid interfaces.[13] The existence of these phenomena means that glass electrodes must always be calibrated before use; a common method of calibration involves the use of standard buffer solutions. Also, there is a slow deterioration due to diffusion into and out of the internal solution. These effects are masked when the electrode is calibrated against buffer solutions but deviations from ideal response are easily observed by means of a Gran plot. Typically, the slope of the electrode response decreases over a period of months.

Storage

Between measurements any glass and membrane electrodes should be kept in a solution of its own ion. It is necessary to prevent the glass membrane from drying out because the performance is dependent on the existence of a hydrated layer, which forms slowly.

See also

References

  1. ^ Cremer, M. Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von Polyphasischen Elektrolytketten. — Z. Biol. 47: 56 (1906).
  2. ^ First publication — The Journal of Physical Chemistry by W. Ostwald and J. H. van 't Hoff) — 1909).
  3. ^ F. Haber und Z. Klemensiewicz. Über elektrische Phasengrenzkräft. Zeitschrift für Physikalische Chemie. Leipzig. 1909 (Vorgetragen in der Sitzung der Karlsruher chemischen Gesellschaft am 28. Jan. 1909), 67, 385.
  4. ^ W. S. Hughes, J. Am. Chem. Soc., 44, 2860. 1922; J. Chem. Soc. Lond., 491, 2860. 1928
  5. ^ Yartsev, Alex. "History of the Glass Electrode". Deranged Physiology. Retrieved 26 June 2016.
  6. ^ Kerridge, Phyllis Margaret Tookey (1925). "The use of the glass electrode in biochemistry". Biochemical Journal. 19 (4): 611–617. doi:10.1042/bj0190611. PMC 1259230. PMID 16743549.
  7. ^ a b Wersin, P.; Leupin, O. X.; Mettler, S.; Gaucher, E. C.; Mäder, U.; De Cannière, P.; Vinsot, A.; Gäbler, H. E.; Kunimaro, T.; Kiho, K.; Eichinger, L. (2011). "Biogeochemical processes in a clay formation in situ experiment: Part A – Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland". Applied Geochemistry. 26 (6): 931–953. Bibcode:2011ApGC...26..931W. doi:10.1016/j.apgeochem.2011.03.004.
  8. ^ a b De Cannière, P.; Schwarzbauer, J.; Höhener, P.; Lorenz, G.; Salah, S.; Leupin, O. X.; Wersin, P. (2011). "Biogeochemical processes in a clay formation in situ experiment: Part C – Organic contamination and leaching data". Applied Geochemistry. 26 (6): 967–979. Bibcode:2011ApGC...26..967D. doi:10.1016/j.apgeochem.2011.03.006.
  9. ^ Stroes-Gascoyne, S.; Sergeant, C.; Schippers, A.; Hamon, C. J.; Nèble, S.; Vesvres, M.-H.; Barsotti, V.; Poulain, S.; Le Marrec, C. (2011). "Biogeochemical processes in a clay formation in situ experiment: Part D – Microbial analyses – Synthesis of results". Applied Geochemistry. 26 (6): 980–989. Bibcode:2011ApGC...26..980S. doi:10.1016/j.apgeochem.2011.03.007.
  10. ^ Hall, D. G., (1996). Ion-Selective Membrane Electrodes: A General Limiting Treatment of Interference Effects, J. Phys. Chem. 100, 7230–7236. doi:10.1021/jp9603039
  11. ^ Belyustin, A. A., (1999). Silver ion Response as a Test for the Multilayer Model of Glass Electrodes. — Electroanalysis. Volume 11, Issue 10-11, Pages 799—803.
  12. ^ A Guide to pH Measurement (PDF). Mettler Toledo.
  13. ^ Bates, Roger G. (1954). "Chapter 10, Glass electrodes". Determination of pH. New York: Wiley.

Further reading

  • Bates, Roger G. (1954). "Chapter 10, Glass Electrodes". Determination of pH. Wiley.
  • Bates, Roger G. (1973). Determination of pH: Theory and practice. Wiley.
  • Nikol'skii, E. P., Schul'tz, M. M., et al., (1963). Vestn. Leningr. Univ., Ser. Fiz. i Khim., 18, No. 4, 73–186 (this series of articles summarizes Russian works on the effect of varying the glass composition on electrode properties and chemical stability of a great variety of glasses).

Read other articles:

Australian judge The Right HonourableSir Frank KittoAC, KBE, QCHigh Court in 1952, Kitto far right, back rowJustice of the High Court of AustraliaIn office10 May 1950 – 1 August 1970Nominated byRobert MenziesPreceded bySir George RichSucceeded bySir Harry Gibbs Personal detailsBorn30 July 1903Melbourne, Victoria, AustraliaDied15 February 1994Armidale, New South Wales, Australia Sir Frank Walters Kitto, AC, KBE, QC (30 July 1903 – 15 February 19...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. L'introduction de cet article est soit absente, soit non conforme aux conventions de Wikipédia (novembre 2019). Ces motifs sont peut-être précisés sur la page de discussion. — Découvrez comment faire pour en améliorer la rédaction. Frontières temporaires créées par l'avancée des troupes allemandes et soviétiques. La frontière fut d’abord ajustée selon les termes du Pacte germano-soviétique conc...

 

Bandar Udara WunopitoWunopito AirportIATA: LWEICAO: WATWInformasiJenisPublikPemilikPemerintah IndonesiaPengelolaKementerian Perhubungan Republik IndonesiaMelayaniLewoleba, Nusa Tenggara Timur, IndonesiaKetinggian dpl5 mdplKoordinat08°21′45″S 123°26′17″E / 8.36250°S 123.43806°E / -8.36250; 123.43806Landasan pacu Arah Panjang Permukaan m kaki 02/20 1.200 3.937 Aspal Sumber: DAFIF[1][2] Bandar Udara Wunopito (bahasa Inggris: Wunop...

此生者传记没有列出任何参考或来源。 (2019年12月17日)请协助補充可靠来源,针对在世人物的无法查证的内容将被立即移除。 青田典子女演员原文名あおた のりこ罗马拼音Aota Noriko昵称泡沫青田别名森田典子、森陽子国籍 日本民族大和出生 (1967-10-07) 1967年10月7日(56歲) 日本愛媛縣松山市职业演員、藝人语言日語母校戶板女子短期大學肄業配偶玉置浩二出道日期1986年

 

American horror television series For similar terms, see Midnight Club and Midnight Club (film). The Midnight ClubGenre Horror Mystery-thriller Created by Mike Flanagan Leah Fong Based onThe Midnight Cluband other works of Christopher PikeStarring Iman Benson Igby Rigney Ruth Codd Annarah Cymone Chris Sumpter Adia Aya Furukawa Sauriyan Sapkota Matt Biedel Samantha Sloyan Zach Gilford Heather Langenkamp ComposerThe Newton BrothersCountry of originUnited StatesOriginal languageEnglishNo. of sea...

 

この記事の主題はウィキペディアにおける人物の特筆性の基準を満たしていないおそれがあります。基準に適合することを証明するために、記事の主題についての信頼できる二次資料を求めています。なお、適合することが証明できない場合には、記事は統合されるか、リダイレクトに置き換えられるか、さもなくば削除される可能性があります。出典検索?: 嶋野花...

Yū KamiyaInformación personalNacimiento 10 de noviembre de 1984 (39 años)Uberaba (Brasil)Nacionalidad Brasileña y japonesaInformación profesionalOcupación Escritor, ilustrador, mangaka y novelista ligero Obras notables Itsuka Tenma no Kuro UsagiNo Game No Life Sitio web ykp3.seesaa.net Firma [editar datos en Wikidata] Thiago Furukawa Lucas (nacido el 10 de noviembre de 1984),[1]​ que se hace llamar Yū Kamiya (榎宮祐, Kamiya Yū?), es un novelista, ilustrador[2]​...

 

 Nota: Para outros significados de La Unión, veja La Unión. Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Dezembro de 2019) União Região Arequipa Capital Cotahuasi Prefeito População 17.200 habitantes Censo 2005 Área 4.746,40 km² Densidade 3,6 hab./km² Mapas Localizaçã...

 

Manga written by Garon Tsuchiya and Nobuaki Minegishi Old BoyCover to Vol. 1オールドボーイ―ルーズ戦記(Ōrudo Bōi Rūzu Senki)GenreAction[1]Psychological thriller[2] MangaWritten byGaron TsuchiyaIllustrated byNobuaki MinegishiPublished byFutabashaEnglish publisherNA: Dark Horse ComicsImprintAction ComicsMagazineManga ActionDemographicSeinenOriginal run1996 – 1998Volumes8 (List of volumes) Live-action films Oldboy (2003) Zinda (2006) Oldboy (2013)...

Railway station in Surrey, England FarnhamGeneral informationLocationFarnham, WaverleyEnglandGrid referenceSU844465Managed bySouth Western RailwayPlatforms2Other informationStation codeFNHClassificationDfT category C2HistoryOpened8 October 1849Passengers2017/18 1.563 million Interchange  8532018/19 1.563 million Interchange  1,0062019/20 1.548 million Interchange  25,3402020/21 0.274 million Interchange  6,2522021/22 0.931 million Interchange ...

 

Protestant Separatists from the Church of England A Catalogue of the Severall Sects and Opinions in England and other Nations: With a briefe Rehearsall of their false and dangerous Tenents, a propaganda broadsheet denouncing English dissenters from 1647, including Jesuits, Welsh blasphemers, Arminians, Arians, Adamites, Libertines (Antinomians), Antescripturians, Soul sleepers, Anabaptists, Familists, Seekers, and Divorcers English Dissenters or English Separatists were Protestants who separa...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2019) ستانلي تايلور معلومات شخصية تاريخ الميلاد 2 مارس 1875  تاريخ الوفاة 22 يوليو 1965 (90 سنة)   الجنسية المملكة المتحدة المملكة المتحدة لبريطانيا العظمى وأيرلند...

South Korean actor In this Korean name, the family name is Park. Park Myung-hoonPark in August 2022Born (1975-05-28) May 28, 1975 (age 48)South KoreaOccupationActorYears active1999-presentAgentAce FactoryKorean nameHangul박명훈Revised RomanizationBak Myeong-hunMcCune–ReischauerPak Myŏnghun Park Myung-hoon (Korean: 박명훈; born May 28, 1975), is a South Korean actor. He made his acting debut as a stage actor in the 1999 play Class.[1] He is best known internationally...

 

В Википедии есть статьи о других людях с фамилией Ле-Блан. Жюльен Ле Блан Дата рождения 30 марта 1851(1851-03-30)[1][2][…] Место рождения Париж, Франция Дата смерти 28 февраля 1936(1936-02-28)[3] (84 года) Место смерти Париж, Франция Страна  Франция[4]  Медиафайлы на Викис...

 

State park in Lauderdale and Lawrence counties, Alabama, United States Joe Wheeler State ParkLocation in AlabamaLocationLauderdale & Lawrence counties, Alabama, United StatesCoordinates34°47′28″N 87°22′45″W / 34.79111°N 87.37917°W / 34.79111; -87.37917Area2,550 acres (10.3 km2)Elevation571 ft (174 m)DesignationAlabama state parkEstablished1949Named forJoseph Joe WheelerAdministratorAlabama Department of Conservation and Natural ResourcesW...

Hawker 400 adalah pesawat jet perusahaan kecil mesin kembar. Awalnya dirancang dan dibangun oleh Mitsubishi, telah dikembangkan lebih lanjut dan diperbarui oleh Beech Aircraft Company, sekarang bagian dari Hawker Beechcraft . Referensi Field, Hugh and Hurst, Mike. The Great St Louis Meeting. Flight International, 30 September 1978, pp. 1261–1266. Taylor, John W.R. (editor). Jane's All The World's Aircraft 1988-89. Coulsdon, UK: Jane's Defence Data, 1988. ISBN 0-7106-0867-5. Taylor, Michael ...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. عبد الله بن شداد معلومات شخصية تاريخ الوفاة 82 هـ الأب شداد بن الهاد الليثي  الحي...

 

Species of harvestman/daddy longlegs Zuma tioga Briggs, 1971 (SDSU OP1048) Zuma tioga Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Order: Opiliones Family: Paranonychidae Genus: Zuma Species: Z. tioga Binomial name Zuma tiogaBriggs, 1971 Zuma tioga is a species of armoured harvestman in the family Paranonychidae.[1][2][3][4] It is found in North America.[1][5] Refer...

Pour le jeu dérivé, voir Buffy contre les vampires (jeu de cartes). Buffy contre les vampires Logo original de la série. Données clés Titre original Buffy the Vampire Slayer Genre Fantasy urbaineHorreurActionComédie dramatique Création Joss Whedon Production Producteurs exécutifs :Joss WhedonDavid GreenwaltMarti NoxonFran Rubel KuzuiKaz KuzuiSociétés de production :Mutant EnemySandollar TelevisionKuzui Entertainment20th Century Fox Television Acteurs principaux Sarah Miche...

 

  هذه المقالة عن قرية ومنطقة إدارية في أفغانستان. لأسماء مشابهة، طالع جيلان (توضيح). جيلان (أفغانستان) تقسيم إداري البلد أفغانستان  [1] إحداثيات 32°43′34″N 67°38′05″E / 32.7261°N 67.6347°E / 32.7261; 67.6347  الرمز الجغرافي 1140919  تعديل مصدري - تعديل   جيلان هو اسم مد...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!