Furry's theorem

This triangle diagram is forbidden by Furry's theorem in quantum electrodynamics.

In quantum electrodynamics, Furry's theorem states that if a Feynman diagram consists of a closed loop of fermion lines with an odd number of vertices, its contribution to the amplitude vanishes. As a corollary, a single photon cannot arise from the vacuum or be absorbed by it. The theorem was first derived by Wendell H. Furry in 1937,[1] as a direct consequence of the conservation of energy and charge conjugation symmetry.

Theory

Quantum electrodynamics has a number of symmetries, one of them being the discrete symmetry of charge conjugation. This acts on fields through a unitary charge conjugation operator which anticommutes with the photon field as , while leaving the vacuum state invariant . Considering the simplest case of the correlation function of a single photon operator gives

so this correlation function must vanish.[2] For photon operators, this argument shows that under charge conjugation this picks up a factor of and thus vanishes when is odd. More generally, since the charge conjugation operator also anticommutes with the vector current , Furry's theorem states that the correlation function of any odd number of on-shell or off-shell photon fields and/or currents must vanish in quantum electrodynamics.

Since the theorem holds at the non-perturbative level, it must also hold at each order in perturbation theory.[3] At leading order this means that any fermion loop with an odd number of vertices must have a vanishing contribution to the amplitude. An explicit calculation of these diagrams reveals that this is because the diagram with a fermion going clockwise around the loop cancels with the second diagram where the fermion goes anticlockwise. The vanishing of the three vertex loop can also be seen as a consequence of the renormalizability of quantum electrodynamics since the bare Lagrangian does not have any counterterms involving three photons.[4]

Applications and limitations

Furry's theorem allows for the simplification of a number of amplitude calculations in quantum electrodynamics.[5] In particular, since the result also holds when photons are off-shell, all Feynman diagrams which have at least one internal fermion loops with an odd number of vertices have a vanishing contribution to the amplitude and can be ignored. Historically the theorem was important in showing that the scattering of photons by an external field, known as Delbrück scattering, does not proceed via a triangle diagram and must instead proceed through a box diagram.[1]

In the presence of a background charge density or a nonzero chemical potential, Furry's theorem is broken, although if both these vanish then it does hold at nonzero temperatures as well as at zero temperatures.[6] It also does not apply in the presence of a strong background magnetic field where photon splitting interactions are allowed, a process that may be detected in astrophysical settings such as around neutron stars.[7] The theorem also does not hold when Weyl fermions are involved in the loops rather than Dirac fermions, resulting in non-vanishing odd vertex number diagrams. In particular, the non-vanishing of the triangle diagram with Weyl fermions gives rise to the chiral anomaly, with the sum of these having to cancel for a quantum theory to be consistent.

While the theorem has been formulated in quantum electrodynamics, a version of it holds more generally. For example, while the Standard Model is not charge conjugation invariant due to weak interactions, the fermion loop diagrams with an odd number of photons attached will still vanish since these are equivalent to a purely quantum electrodynamical diagram. Similarly, any diagram involving such loops as sub-diagrams will also vanish. It is however no longer true that all odd number photon diagrams need to vanish. For example, relaxing the requirement of charge conjugation and parity invariance of quantum electrodynamics, as occurs when weak interactions are included, allows for a three-photon vertex term.[8] While this term does give rise to interactions, they only occur if two of the photons are virtual; searching for such interactions must be done indirectly, such as through bremsstrahlung experiments from electron-positron collisions.[9]

In non-Abelian Yang–Mills theories, Furry's theorem does not hold since these involve noncommuting color charges. For example, the quark triangle diagrams with three external gluons are proportional to two different generator traces and so they do not cancel.[10][11] However, charge conjugation arguments can still be applied in limited cases such as to deduce that the triangle diagram for a color neutral spin boson vanishes.[12]

See also

References

  1. ^ a b Furry, W. H. (1937-01-15). "A Symmetry Theorem in the Positron Theory". Physical Review. 51 (2): 125–129. Bibcode:1937PhRv...51..125F. doi:10.1103/PhysRev.51.125. ISSN 0031-899X.
  2. ^ Peskin, M.E.; Schroeder, D.V. (1995). "10". An Introduction to Quantum Field Theory. Westview Press. p. 318. ISBN 9780201503975.
  3. ^ Weinberg, S. (1995). "10". The Quantum Theory of Fields: Foundations. Vol. 1. Cambridge University Press. p. 428. ISBN 9780521670531.
  4. ^ Sterman, G. (1993). "11". An Introduction to Quantum Field Theory. Cambridge University Press. pp. 326–327. ISBN 978-0521311328.
  5. ^ Berestetskii, V.B. (1982). "8". Quantum Electrodynamics: Volume 4 (Course of Theoretical Physics). Butterworth-Heinemann. pp. 315–316. ISBN 978-0750633710.
  6. ^ Majumder, A.; Bourque, A.; Gale, C. (2004). "Broken symmetries and dilepton production from gluon fusion in a quark gluon plasma". Phys. Rev. C. 69 (6): 064901. arXiv:hep-ph/0311178. Bibcode:2004PhRvC..69f4901M. doi:10.1103/PhysRevC.69.064901. S2CID 118879778.
  7. ^ Adler, S.L. (1971). "Photon splitting and photon dispersion in a strong magnetic field". Annals of Physics. 67 (2): 599–647. Bibcode:1971AnPhy..67..599A. doi:10.1016/0003-4916(71)90154-0.
  8. ^ Delbourgo, R. (1976). "The three-photon vertex". J. Phys. G. 2 (11): 787. Bibcode:1976JPhG....2..787D. doi:10.1088/0305-4616/2/11/003. S2CID 250863523.
  9. ^ Basham, C.L.; Kabir, P.K. (1977). "Possible three-photon couplings". Phys. Rev. D. 15 (11): 3388–3393. Bibcode:1977PhRvD..15.3388B. doi:10.1103/PhysRevD.15.3388.
  10. ^ Dissertori, G. (2009). "3". Quantum Chromodynamics High Energy Experiments and Theory. Oxford University Press. pp. 85–86. ISBN 978-0199566419.
  11. ^ Smolyakov, N. V. (1982). "Furry theorem for non-abelian gauge Lagrangians". Theoretical and Mathematical Physics. 50 (3): 225–228. Bibcode:1982TMP....50..225S. doi:10.1007/BF01016449. ISSN 0040-5779. S2CID 119765674.
  12. ^ Englert, C.; Hackstein, C.; Spannowsky, M. (2010). "Measuring spin and CP from semihadronic ZZ decays using jet substructure". Phys. Rev. D. 82 (11): 114024. arXiv:1010.0676. Bibcode:2010PhRvD..82k4024E. doi:10.1103/PhysRevD.82.114024. S2CID 48357670.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Pembantaian PalembangBagian dari Konflik Palembang–BelandaTanggal14 September 1811LokasiMuara Sungsang, Kesultanan PalembangMetodePembantaianPihak terlibat Kesultanan Palembang Inggris (dukungan tidak langsung) BelandaTokoh utama Mahmud Badaruddin II...

 

Kevin De Bruyne De Bruyne saat konfrensi pers Tim nasional sepak bola Belgia di Piala Dunia 2018Informasi pribadiNama lengkap Kevin De Bruyne[1]Tanggal lahir 28 Juni 1991 (umur 32)[2]Tempat lahir Drongen, Ghent, Belgia[3]Tinggi 181 cm (5 ft 11+1⁄2 in)[4]Posisi bermain Gelandang serang Gelandang sayapInformasi klubKlub saat ini Manchester CityNomor 17Karier junior2003–2005 Gent2005–2008 Racing GenkKarier senior*Tahun Tim Tampil (Gol...

 

PT Bank Mestika Dharma, Tbk.JenisPublikKode emitenIDX: BBMDIndustriJasa keuanganDidirikan27 April 1955KantorpusatMedan, IndonesiaCabang12 Kantor cabang44 Kantor cabang pembantu11 Kantor kasWilayah operasiNasionalTokohkunciAchmad S. Kartasasmita (Presiden Direktur)Situs webSitus web resmi Bank Mestika Dharma atau yang biasa dikenal sebagai Bank Mestika (IDX: BBMD) adalah sebuah bank swasta nasional yang berbasis di kota Medan. Berdiri pada tanggal 27 April 1955 dan mulai beroperasi sejak 12 De...

Austrian archduke (1852–1890) You can help expand this article with text translated from the corresponding article in German. (November 2012) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-transl...

 

Palestinian-led movement demanding international sanctions against Israel This article is about the Boycott, Divestment and Sanctions movement specifically. It is not to be confused with Boycotts of Israel. Boycott, Divestment and SanctionsAbbreviationBDSFormation9 July 2005 (2005-07-09)[1]FounderOmar Barghouti,[2] Ramy Shaat[3]TypeNonprofit organizationPurposeBoycotts, political activismGeneral CoordinatorMahmoud Nawajaa[4]Main organPalestinian ...

 

British courtier (1843–1927) The Right HonourableThe Lady AmpthillVALady Ampthill in 1896BornEmily Theresa Villiers(1843-09-09)9 September 1843Died22 February 1927(1927-02-22) (aged 83)Noble familyVilliers family (by birth)Russell family (by marriage)Spouse(s) Odo Russell, 1st Baron Ampthill ​ ​(m. 1868; died 1884)​FatherGeorge Villiers, 4th Earl of ClarendonMotherLady Katherine Foster-Barham Emily Theresa Russell, Baroness Ampthill,[...

1966 film by Peter Brook For the play, see Marat/Sade. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marat/Sade film – news · newspapers · books · scholar...

 

Tedong atau kerbau yang digunakan dalam berbagai acara adat di Tana Toraja Rambu Solo' adalah sebuah upacara pemakaman dalam agama Aluk To Dolo yang mewajibkan keluarga almarhum membuat sebuah pesta sebagai tanda penghormatan terakhir pada mendiang yang telah pergi.[1] Kata Rambu Solo' dalam bahasa Toraja yang secara harafiah berarti asap yang arahnya ke bawah. Asap yang arahnya ke bawah artinya ritus-ritus persembahan (asap) untuk orang mati yang dilaksanakan sesudah pukul 12 ketika ...

 

2019 documentary film by Mads Brügger Cold Case HammarskjöldFilm posterDirected byMads BrüggerWritten byMads BrüggerProduced byNadja Nørgaard KristensenStarring Mads Brügger Göran Björkdahl Dag Hammarskjöld CinematographyTore VollanEdited byNicolás Nørgaard StaffolaniMusic byJohn Erik KaadaDistributed byMagnolia Pictures (USA)Release dates 26 January 2019 (2019-01-26) (Sundance) 16 August 2019 (2019-08-16) (USA) Running time128 minutesCountries...

This article is about the suburban community in the municipality of Delta, British Columbia, Canada. For other uses, see Tsawwassen (disambiguation). Neighbourhood in Metro Vancouver, British Columbia, CanadaTsawwassenNeighbourhoodTsawwassen Mills OutletCoordinates: 49°01′N 123°05′W / 49.017°N 123.083°W / 49.017; -123.083 (Tsawwassen)[1]CountryCanadaProvinceBritish ColumbiaRegional districtMetro VancouverCityDeltaArea[2] • To...

 

2020 Microsoft laptop model This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (October 2020) (Learn how and when to remove this template message) Surface Laptop GoSurface Laptop GoDeveloperMicrosoftProduct familyMicrosoft SurfaceTypeLaptopGenerationFirstRelease date1 October 2020;3 years ago (2020-10-...

 

Fictional character in Sons of Anarchy Fictional character Jax TellerSons of Anarchy characterCharlie Hunnam as Jax TellerFirst appearancePilot (2008)Last appearancePapa's Goods (2014)Created byKurt SutterBased onPrince HamletPortrayed byCharlie HunnamIn-universe informationNicknames Jackie Boy Jackie The Prince Handsome Jack The King Jax Title Vice President; later President[1] Occupation Outlaw motorcyclist Gun runner Mechanic[2] Business owner AffiliationSons of Anarchy Mot...

Religion in Eswatini (2017 census)[1][2]   Christianity (89.3%)  No religion (7.4%)  Traditional faiths (0.5%)  Islam (2%) A church in Bethel, Eswatini in 1930 Christianity is the predominant religion in Eswatini, with Protestantism being its largest denomination.[3] The Constitution of the Kingdom, which went into effect on February 8, 2006, provides for freedom of religion and the government generally respects religious liberty...

 

1984 video gameDaredevil DennisCover artPublisher(s)VisionsDesigner(s)Simon Pick[1]Platform(s)Acorn Electron, BBC Micro, Commodore 64Release1984Genre(s)PlatformMode(s)Single player Daredevil Dennis (spelled on screen Dare Devil Denis) is a computer game published by Visions Software in 1984 for the Acorn Electron and BBC Micro. Both the controls and screen layout are the same as in Atari's 1977 Stunt Cycle arcade game. Daredevil Dennis: The Sequel was published by Visions Software for...

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860–1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881...

Place in Kara Region, TogoNanaeniNanaeniLocation in TogoCoordinates: 9°31′N 0°40′E / 9.517°N 0.667°E / 9.517; 0.667Country TogoRegionKara RegionPrefectureBassar PrefectureTime zoneUTC + 0 Nanaeni is a village in the Bassar Prefecture in the Kara Region of north-western Togo.[1] References ^ Maplandia world gazetteer vte Bassar Prefecture of the Kara RegionCapital: Bassar Afoou Akalede Aketa Akomomboua Alidounpo Apoeydoumpo Atontebou Badao Baga Bakari Ba...

 

Azerbaijani designer and businessman This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2022) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of ...

 

1948 film by George Marshall This article is about the 1948 period film. For other uses, see Taproot (disambiguation). Tap RootsOriginal lobby cardDirected byGeorge MarshallWritten byAlan Le MayLionel WiggamBased onTap Rootsby James H. StreetProduced byWalter WangerStarringVan HeflinSusan HaywardBoris KarloffJulie LondonCinematographyWinton C. Hoch Lionel LindonEdited byMilton CarruthMusic byFrank SkinnerProductioncompanyWalter Wanger ProductionsDistributed byUniversal PicturesRelease date Au...

Boys' boarding school in Dehradun, India The Doon SchoolMain Building of The Doon SchoolLocationThe Doon SchoolMall RoadDehradun – 248001India(Google Map, OpenStreetMap)Coordinates30°20′00″N 78°01′48″E / 30.33333°N 78.03000°E / 30.33333; 78.03000InformationSchool typePrivate boarding schoolMotto Knowledge Our LightFoundedSeptember 10, 1935; 88 years ago (1935-09-10)FounderSatish Ranjan DasCEEB code671616Chairman of GovernorsAno...

 

Dutch racing driver Bent ViscaalNationality DutchBorn (1999-09-18) 18 September 1999 (age 24)Almelo, OverijsselFIA World Endurance Championship careerDebut season2022Current teamPrema RacingRacing licence FIA GoldCar number9Former teamsARC BratislavaStarts9 (9 entries)Wins0Podiums0Poles0Fastest laps0Previous series202220212019-2020201820172017European Le Mans SeriesFIA Formula 2 ChampionshipFIA Formula 3 ChampionshipEuroformula Open ChampionshipF4 Spanish ChampionshipSMP F4 Championship ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!