Floyd–Warshall algorithm

Floyd–Warshall algorithm
ClassAll-pairs shortest path problem (for weighted graphs)
Data structureGraph
Worst-case performance
Best-case performance
Average performance
Worst-case space complexity

In computer science, the Floyd–Warshall algorithm (also known as Floyd's algorithm, the Roy–Warshall algorithm, the Roy–Floyd algorithm, or the WFI algorithm) is an algorithm for finding shortest paths in a directed weighted graph with positive or negative (or zero) edge weights (but with no negative cycles).[1][2] A single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices. Although it does not return details of the paths themselves, it is possible to reconstruct the paths with simple modifications to the algorithm. Versions of the algorithm can also be used for finding the transitive closure of a relation , or (in connection with the Schulze voting system) widest paths between all pairs of vertices in a weighted graph.

History and naming

The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962.[3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959[4] and also by Stephen Warshall in 1962[5] for finding the transitive closure of a graph,[6] and is closely related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression, with the difference being the use of a min-plus semiring.[7] The modern formulation of the algorithm as three nested for-loops was first described by Peter Ingerman, also in 1962.[8]

Algorithm

The Floyd–Warshall algorithm compares many possible paths through the graph between each pair of vertices. It is guaranteed to find all shortest paths and is able to do this with comparisons in a graph,[1][9] even though there may be edges in the graph. It does so by incrementally improving an estimate on the shortest path between two vertices, until the estimate is optimal.

Consider a graph with vertices numbered 1 through . Further consider a function that returns the length of the shortest possible path (if one exists) from to using vertices only from the set as intermediate points along the way. Now, given this function, our goal is to find the length of the shortest path from each to each using any vertex in . By definition, this is the value , which we will find recursively.

Observe that must be less than or equal to : we have more flexibility if we are allowed to use the vertex . If is in fact less than , then there must be a path from to using the vertices that is shorter than any such path that does not use the vertex . Since there are no negative cycles this path can be decomposed as:

(1) a path from to that uses the vertices , followed by
(2) a path from to that uses the vertices .

And of course, these must be a shortest such path (or several of them), otherwise we could further decrease the length. In other words, we have arrived at the recursive formula:

.

The base case is given by

where denotes the weight of the edge from to if one exists and ∞ (infinity) otherwise.

These formulas are the heart of the Floyd–Warshall algorithm. The algorithm works by first computing for all pairs for , then , then , and so on. This process continues until , and we have found the shortest path for all pairs using any intermediate vertices. Pseudocode for this basic version follows.

Pseudocode

let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
for each edge (u, v) do
    dist[u][v] ← w(u, v)  // The weight of the edge (u, v)
for each vertex v do
    dist[v][v] ← 0
for k from 1 to |V|
    for i from 1 to |V|
        for j from 1 to |V|
            if dist[i][j] > dist[i][k] + dist[k][j] 
                dist[i][j] ← dist[i][k] + dist[k][j]
            end if

Example

The algorithm above is executed on the graph on the left below:

Prior to the first recursion of the outer loop, labeled k = 0 above, the only known paths correspond to the single edges in the graph. At k = 1, paths that go through the vertex 1 are found: in particular, the path [2,1,3] is found, replacing the path [2,3] which has fewer edges but is longer (in terms of weight). At k = 2, paths going through the vertices {1,2} are found. The red and blue boxes show how the path [4,2,1,3] is assembled from the two known paths [4,2] and [2,1,3] encountered in previous iterations, with 2 in the intersection. The path [4,2,3] is not considered, because [2,1,3] is the shortest path encountered so far from 2 to 3. At k = 3, paths going through the vertices {1,2,3} are found. Finally, at k = 4, all shortest paths are found.

The distance matrix at each iteration of k, with the updated distances in bold, will be:

k = 0 j
1 2 3 4
i 1 0 −2
2 4 0 3
3 0 2
4 −1 0
k = 1 j
1 2 3 4
i 1 0 −2
2 4 0 2
3 0 2
4 −1 0
k = 2 j
1 2 3 4
i 1 0 −2
2 4 0 2
3 0 2
4 3 −1 1 0
k = 3 j
1 2 3 4
i 1 0 −2 0
2 4 0 2 4
3 0 2
4 3 −1 1 0
k = 4 j
1 2 3 4
i 1 0 −1 −2 0
2 4 0 2 4
3 5 1 0 2
4 3 −1 1 0

Behavior with negative cycles

A negative cycle is a cycle whose edges sum to a negative value. There is no shortest path between any pair of vertices , which form part of a negative cycle, because path-lengths from to can be arbitrarily small (negative). For numerically meaningful output, the Floyd–Warshall algorithm assumes that there are no negative cycles. Nevertheless, if there are negative cycles, the Floyd–Warshall algorithm can be used to detect them. The intuition is as follows:

  • The Floyd–Warshall algorithm iteratively revises path lengths between all pairs of vertices , including where ;
  • Initially, the length of the path is zero;
  • A path can only improve upon this if it has length less than zero, i.e. denotes a negative cycle;
  • Thus, after the algorithm, will be negative if there exists a negative-length path from back to .

Hence, to detect negative cycles using the Floyd–Warshall algorithm, one can inspect the diagonal of the path matrix, and the presence of a negative number indicates that the graph contains at least one negative cycle.[9] During the execution of the algorithm, if there is a negative cycle, exponentially large numbers can appear, as large as , where is the largest absolute value of a negative edge in the graph. To avoid overflow/underflow problems one should check for negative numbers on the diagonal of the path matrix within the inner for loop of the algorithm.[10] Obviously, in an undirected graph a negative edge creates a negative cycle (i.e., a closed walk) involving its incident vertices. Considering all edges of the above example graph as undirected, e.g. the vertex sequence 4 – 2 – 4 is a cycle with weight sum −2.

Path reconstruction

The Floyd–Warshall algorithm typically only provides the lengths of the paths between all pairs of vertices. With simple modifications, it is possible to create a method to reconstruct the actual path between any two endpoint vertices. While one may be inclined to store the actual path from each vertex to each other vertex, this is not necessary, and in fact, is very costly in terms of memory. Instead, we can use the shortest-path tree, which can be calculated for each node in time using memory, and allows us to efficiently reconstruct a directed path between any two connected vertices.

Pseudocode

The array prev[u][v] holds the penultimate vertex on the path from u to v (except in the case of prev[v][v], where it always contains v even if there is no self-loop on v):[11]

let dist be a  array of minimum distances initialized to  (infinity)
let prev be a  array of vertex indices initialized to null

procedure FloydWarshallWithPathReconstruction() is
    for each edge (u, v) do
        dist[u][v] ← w(u, v)  // The weight of the edge (u, v)
        prev[u][v] ← u
    for each vertex v do
        dist[v][v] ← 0
        prev[v][v] ← v
    for k from 1 to |V| do // standard Floyd-Warshall implementation
        for i from 1 to |V|
            for j from 1 to |V|
                if dist[i][j] > dist[i][k] + dist[k][j] then
                    dist[i][j] ← dist[i][k] + dist[k][j]
                    prev[i][j] ← prev[k][j]
procedure Path(u, v) is
    if prev[u][v] = null then
        return []
    path ← [v]
    while uv do
        v ← prev[u][v]
        path.prepend(v)
    return path

Time complexity

Let be , the number of vertices. To find all of (for all and ) from those of requires operations. Since we begin with and compute the sequence of matrices , , , , each having a cost of , the total time complexity of the algorithm is .[9][12]

Applications and generalizations

The Floyd–Warshall algorithm can be used to solve the following problems, among others:

Implementations

Implementations are available for many programming languages.

Comparison with other shortest path algorithms

For graphs with non-negative edge weights, Dijkstra's algorithm can be used to find all shortest paths from a single vertex with running time . Thus, running Dijkstra starting at each vertex takes time . Since , this yields a worst-case running time of repeated Dijkstra of . While this matches the asymptotic worst-case running time of the Floyd-Warshall algorithm, the constants involved matter quite a lot. When a graph is dense (i.e., ), the Floyd-Warshall algorithm tends to perform better in practice. When the graph is sparse (i.e., is significantly smaller than ), Dijkstra tends to dominate.

For sparse graphs with negative edges but no negative cycles, Johnson's algorithm can be used, with the same asymptotic running time as the repeated Dijkstra approach.

There are also known algorithms using fast matrix multiplication to speed up all-pairs shortest path computation in dense graphs, but these typically make extra assumptions on the edge weights (such as requiring them to be small integers).[16][17] In addition, because of the high constant factors in their running time, they would only provide a speedup over the Floyd–Warshall algorithm for very large graphs.

References

  1. ^ a b Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to Algorithms (1st ed.). MIT Press and McGraw-Hill. ISBN 0-262-03141-8. See in particular Section 26.2, "The Floyd–Warshall algorithm", pp. 558–565 and Section 26.4, "A general framework for solving path problems in directed graphs", pp. 570–576.
  2. ^ Kenneth H. Rosen (2003). Discrete Mathematics and Its Applications, 5th Edition. Addison Wesley. ISBN 978-0-07-119881-3.
  3. ^ Floyd, Robert W. (June 1962). "Algorithm 97: Shortest Path". Communications of the ACM. 5 (6): 345. doi:10.1145/367766.368168. S2CID 2003382.
  4. ^ Roy, Bernard (1959). "Transitivité et connexité". C. R. Acad. Sci. Paris (in French). 249: 216–218.
  5. ^ Warshall, Stephen (January 1962). "A theorem on Boolean matrices". Journal of the ACM. 9 (1): 11–12. doi:10.1145/321105.321107. S2CID 33763989.
  6. ^ Weisstein, Eric W. "Floyd-Warshall Algorithm". MathWorld.
  7. ^ Kleene, S. C. (1956). "Representation of events in nerve nets and finite automata". In C. E. Shannon and J. McCarthy (ed.). Automata Studies. Princeton University Press. pp. 3–42.
  8. ^ Ingerman, Peter Z. (November 1962). "Algorithm 141: Path Matrix". Communications of the ACM. 5 (11): 556. doi:10.1145/368996.369016. S2CID 29010500.
  9. ^ a b c Hochbaum, Dorit (2014). "Section 8.9: Floyd-Warshall algorithm for all pairs shortest paths" (PDF). Lecture Notes for IEOR 266: Graph Algorithms and Network Flows. Department of Industrial Engineering and Operations Research, University of California, Berkeley. pp. 41–42.
  10. ^ Stefan Hougardy (April 2010). "The Floyd–Warshall algorithm on graphs with negative cycles". Information Processing Letters. 110 (8–9): 279–281. doi:10.1016/j.ipl.2010.02.001.
  11. ^ "Free Algorithms Book".
  12. ^ Baras, John; Theodorakopoulos, George (2022). Path Problems in Networks. Springer International Publishing. ISBN 9783031799839.
  13. ^ Gross, Jonathan L.; Yellen, Jay (2003), Handbook of Graph Theory, Discrete Mathematics and Its Applications, CRC Press, p. 65, ISBN 9780203490204.
  14. ^ Penaloza, Rafael. "Algebraic Structures for Transitive Closure". CiteSeerX 10.1.1.71.7650. {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ Gillies, Donald (1993). Scheduling Tasks with AND/OR precedence contraints (PhD Thesis, Appendix B) (PDF) (Report).
  16. ^ Zwick, Uri (May 2002), "All pairs shortest paths using bridging sets and rectangular matrix multiplication", Journal of the ACM, 49 (3): 289–317, arXiv:cs/0008011, doi:10.1145/567112.567114, S2CID 1065901.
  17. ^ Chan, Timothy M. (January 2010), "More algorithms for all-pairs shortest paths in weighted graphs", SIAM Journal on Computing, 39 (5): 2075–2089, CiteSeerX 10.1.1.153.6864, doi:10.1137/08071990x.

Read other articles:

1976 studio album by The UpsettersSuper ApeStudio album by The UpsettersReleasedAugust 1976 (1976-08)RecordedBlack Ark, Kingston, JamaicaGenreDubLength37:37LabelIsland, UpsetterProducerLee PerryThe Upsetters chronology Revolution Dub(1975) Super Ape(1976) Return of the Super Ape(1978) Lee Scratch Perry chronology Revolution Dub(1975) Super Ape(1976) Roast Fish Collie Weed & Corn Bread(1978) Alternative coverJamaican album cover Professional ratingsReview scoresSourceRati...

 

Europees kampioenschap voetbal 1988 Olympisch Stadion (München) Het Olympiastadion in München, waar het Nederlands elftal zijn eerste EK-overwinning ooit behaalde. Toernooi-informatie Gastland Vlag van Bondsrepubliek Duitsland Bondsrepubliek Duitsland Organisator UEFA Editie 8e Datum 10–25 juni 1988 Teams 8 (van 1 confederatie) Stadions 8 (in 8 gaststeden) Winnaar  Nederland (1e titel) Toernooistatistieken Wedstrijden 15 Doelpunten 34  (2,27 per wedstrijd) Topscor...

 

2021 song by Pink For the documentary of the same name, see Pink: All I Know So Far. All I Know So FarSingle by Pinkfrom the album All I Know So Far: Setlist ReleasedMay 7, 2021 (2021-05-07)Length4:39 3:38 (Radio edit) LabelRCASongwriter(s) Alecia Beth Moore Benj Pasek Justin Paul Producer(s)Greg KurstinPink singles chronology Anywhere Away from Here (2021) All I Know So Far (2021) Irrelevant (2022) Music videoAll I Know So Far on YouTube All I Know So Far is a song by American...

hist-eo cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Junho de 2010) Território dominado pelo Canato de Astracã, entre 1466 e 1556 O Canato de Astracã[1] (em tártaro: Xacitaxan Xanlığı) foi um Estado feudal tártaro que surgiu como resultado a fragmentação dos territórios da Horda de Our...

 

2008 studio album by Beneath the MassacreDystopiaStudio album by Beneath the MassacreReleasedOctober 28, 2008 (2008-10-28)RecordedNorthern StudioGenreTechnical death metal, deathcoreLength32:24LabelProstheticProducerYannick St-AmandBeneath the Massacre chronology Mechanics of Dysfunction(2007) Dystopia(2008) Incongruous(2012) Professional ratingsReview scoresSourceRatingAbout.com [1]ChartAttack [2]Lambgoat(7/10) [3]Southcoast247(unfavorable) [...

 

Dutch footballer Nico de Wolf Nico de Wolf at the 1912 Summer Olympics Medal record Men's association football Representing  Netherlands Olympic Games 1912 Stockholm Team competition Nicolaas de Wolf (October 27, 1887 in Apeldoorn – July 18, 1967 in Doesburg) was a Dutch amateur football (soccer) player who competed in the 1912 Summer Olympics. He was part of the Dutch team, which won the bronze medal in the football tournament.[1] References ^ Nico de Wolf. Olympedia. Retrieve...

Italian pole vaulter (born 1994) Roberta BruniBruni in 2019.Personal informationNicknameSchiocchettoNational teamItalyBorn (1994-03-08) 8 March 1994 (age 29)Rome, ItalyHeight1.70 m (5 ft 7 in)Weight54 kg (119 lb)SportSportAthleticsEventPole vaultClubAtletica Studentesca Ca.Ri.Ri.C.S. CarabinieriAchievements and titlesPersonal bests Pole vault outdoor: 4.73 m (2023) Pole vault indoor: 4.62 m (2023) Medal record European Team Championships 2021 Silesia Pole va...

 

American racing driver NASCAR driverButch LeitzingerLeitzinger at Road America in 2014NationalityAmericanBornRobert Franklin Leitzinger (1969-02-08) February 8, 1969 (age 54)Homestead, PennsylvaniaPirelli World Challenge careerDebut season2014Current teamDyson RacingCar number20Starts7Best finish11th in 2014Finished last season11thPrevious series1999–20131998–20121994–1996, 20071994–1996, 2000, 20061993–1996ALMSGrand-AmNASCAR Nextel Cup SeriesNASCAR Busch SeriesNASCAR Busch Nor...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Berkas:Airplane-Wing-Part-Diagram-Terminology.png Berkas:Airbus-wing-structure-and-Terminology.gif Di dalam pesawat terbang, Rib atau tulang rusuk adalah sebuah komponen yang membentuk elemen struktur sayap, terutama dalam konstruksi tradisional. Deng...

A chapter in the Book of Esther Esther 1← Nehemiah 13chapter 2 →First chapter of a hand-written scroll of the Book of Esther, with reader's pointer.BookBook of EstherCategoryKetuvimChristian Bible partOld TestamentOrder in the Christian part17 Esther 1 is the first chapter of the Book of Esther in the Hebrew Bible or the Old Testament of the Christian Bible.[1] The author of the book is unknown and modern scholars have established that the final stage of the Hebrew text ...

 

Fictional private investigator Fictional character John ShaftRichard Roundtree as John Shaft in 1971First appearanceShaft (1970)Last appearanceShaft (2019)Created byErnest TidymanPortrayed byRichard RoundtreeIn-universe informationGenderMaleOccupationPrivate investigatorFamilyJohn Quentin “Quick Johnny” Smith (father) Hazel Shaft (mother) John Shaft II (son) John JJ Shaft III (grandson)NationalityAmerican John Shaft is a fictional private investigator created by author/screenwriter Ernest...

 

PattonPoster rilis layar lebarSutradara Franklin J. Schaffner Produser Frank McCarthy (produser) Ditulis oleh Francis Ford Coppola Edmund H. North Skenario Francis Ford Coppola Edmund H. North Cerita Francis Ford Coppola Edmund H. North Berdasarkan Patton: Ordeal and Triumpholeh Ladislas Farago A Soldier's Storyoleh Omar N. Bradley Pemeran George C. Scott Karl Malden Penata musikJerry GoldsmithSinematograferFred KoenekampPenyuntingHugh FowlerDistributor20th Century FoxTanggal rilis 4 Fe...

المركبة المدارية أحادية المرحلة (بالإنجليزية: single-stage-to-orbit)‏ هي مركبة فضائية مُصممة للوصول إلى المدار من سطح جرم ما باستخدام الوقود والموائع فقط وبدون استهلاك الخزانات أو المحركات أو الأجهزة الرئيسية الأخرى. يشير المصطلح عادةً، ولكن ليس حصريًا، إلى المركبات الفضائية الق...

 

Belgian violinist and composer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: François Prume – news · newspapers · books · scholar · JSTOR (January 2024) (Learn how and when to remove this template message) François Prume François Hubert Prume (3 June 1816, Stavelot – 14 July 1849, Liège) was a Belgia...

 

Ten szablon jest pod opieką Wikiprojektu Igrzyska olimpijskie, którego celem jest rozwijanie artykułów z dziedziny igrzysk olimpijskich. Jeśli chcesz współuczestniczyć w projekcie, odwiedź jego stronę, gdzie można przyłączyć się do dyskusji i zobaczyć listę otwartych zadań.

У этого термина существуют и другие значения, см. Эномай (значения). Эномайдр.-греч. Οἱνόμαος Стеропа и Эномай. Скульптуры с восточного фронтона храма Зевса в Олимпии Мифология древнегреческая мифология Пол мужской Отец Арес (по альтернативной версии — Алксион) Мать Г...

 

  لمعانٍ أخرى، طالع ساحل العاج (توضيح). يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كوت ديفوار كأس العالم 2006 الاتحاد المشرف اتحاد ساحل العاج لكرة...

 

Haing S. NgorSzületettHaing Somnang Ngor1940. március 22.[1]Francia IndokínaElhunyt1996. február 25. (55 évesen)[1][2]Los AngelesÁllampolgárságakambodzsaiNemzetiségekambodzsaiHázastársaMy-Huoy NgorFoglalkozása orvos nőgyógyász filmszínész televíziós színész író Kitüntetései Oscar-díj a legjobb férfi mellékszereplőnek (1984) BAFTA-díj a legjobb férfi főszereplőnek (1985) Golden Globe-díj a legjobb férfi mellékszereplőnek (...

Uturuki Nazilli ni kamji na wilaya ya Mkoa wa Aydın katika Kanda ya Aegean huko nchini Uturuki. Viungo vya nje Nazilli in Aydın Archived 2 Desemba 2008 at the Wayback Machine. (Kituruki) District governor's official web site (Kituruki) vde Nazilli katika Mkoa wa Aydın (kwenye kanda ya Aegean) nchini Uturuki Wilaya za mijiniAydınWilaya za AydınWilaya za vijijiniBozdoğan - Buharkent - Çine - Didim - Germencik - İncirliova - Karacasu - Karpuzlu - Koçarlı - Köşk - Kuşadası - Kuyucak...

 

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Ogham Stone. 52°00′27″N 8°15′30″W / 52.0075°N 8.25833°W / 52.0075; -8.25833 Ogham Stone Bato Nasod  Irland Lalawigan Munster Kondado County Cork Gitas-on 173 m (568 ft) Tiganos 52°00′27″N 8°15′30″W / 52.0075°N 8.25833°W / 52.0075; -8.25833 Timezone UTC (UTC+0)  - summer (DST) BST (UTC+1) GeoNames 3300050 Bato ang ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!