Share to: share facebook share twitter share wa share telegram print page

Fiber laser

A fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.[citation needed]

Characteristics

An advantage of fiber lasers over other types of lasers is that the laser light is both generated and delivered by an inherently flexible medium, which allows easier delivery to the focusing location and target. This can be important for laser cutting, welding, and folding of metals and polymers. Another advantage is high output power compared to other types of laser. Fiber lasers can have active regions several kilometers long, and so can provide very high optical gain. They can support kilowatt levels of continuous output power because of the fiber's high surface area to volume ratio, which allows efficient cooling. The fiber's waveguide properties reduce or eliminate thermal distortion of the optical path, typically producing a diffraction-limited, high-quality optical beam. Fiber lasers are compact compared to solid-state or gas lasers of comparable power, because the fiber can be bent and coiled, except in the case of thicker rod-type designs, to save space. They have lower cost of ownership.[1][2][3] Fiber lasers are reliable and exhibit high temperature and vibrational stability and extended lifetime. High peak power and nanosecond pulses improve marking and engraving. The additional power and better beam quality provide cleaner cut edges and faster cutting speeds.[4][5]

Design and manufacture

Unlike most other types of lasers, the laser cavity in fiber lasers is constructed monolithically by fusion splicing different types of fiber; fiber Bragg gratings replace conventional dielectric mirrors to provide optical feedback. They may also be designed for single longitudinal mode operation of ultra-narrow distributed feedback lasers (DFB) where a phase-shifted Bragg grating overlaps the gain medium. Fiber lasers are pumped by semiconductor laser diodes or by other fiber lasers.

Double-clad fiber

Double-clad fiber

Many high-power fiber lasers are based on double-clad fiber. The gain medium forms the core of the fiber, which is surrounded by two layers of cladding. The lasing mode propagates in the core, while a multimode pump beam propagates in the inner cladding layer. The outer cladding keeps this pump light confined. This arrangement allows the core to be pumped with a much higher-power beam than could otherwise be made to propagate in it, and allows the conversion of pump light with relatively low brightness into a much higher-brightness signal. There is an important question about the shape of the double-clad fiber; a fiber with circular symmetry seems to be the worst possible design.[6][7][8][9][10][11] The design should allow the core to be small enough to support only a few (or even one) modes. It should provide sufficient cladding to confine the core and optical pump section over a relatively short piece of the fiber.

Tapered double-clad fiber (T-DCF) has tapered core and cladding which enables power scaling of amplifiers and lasers without thermal lensing mode instability.[12][13]

Power scaling

Recent developments in fiber laser technology have led to a rapid and large rise in achieved diffraction-limited beam powers from diode-pumped solid-state lasers. Due to the introduction of large mode area (LMA) fibers as well as continuing advances in high power and high brightness diodes, continuous-wave single-transverse-mode powers from Yb-doped fiber lasers have increased from 100 W in 2001 to a combined beam fiber laser demonstrated power of 30 kW in 2014.[14]

High average power fiber lasers generally consist of a relatively low-power master oscillator, or seed laser, and power amplifier (MOPA) scheme. In amplifiers for ultrashort optical pulses, the optical peak intensities can become very high, so that detrimental nonlinear pulse distortion or even destruction of the gain medium or other optical elements may occur. This is generally avoided by employing chirped-pulse amplification (CPA). State of the art high-power fiber laser technologies using rod-type amplifiers have reached 1 kW with 260 fs pulses [15] and made outstanding progress and delivered practical solutions for the most of these problems.

However, despite the attractive characteristics of fiber lasers, several problems arise when power scaling. The most significant are thermal lensing and material resistance, nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), mode instabilities, and poor output beam quality.

The main approach to solving the problems related to increasing the output power of pulses has been to increase the core diameter of the fiber. Special active fibers with large modes were developed to increase the surface-to-active-volume ratio of active fibers and, hence, improve heat dissipation enabling power scaling.

Moreover, specially developed double cladding structures have been used to reduce the brightness requirements of the high-power pump diodes by controlling pump propagation and absorption between the inner cladding and the core.

Several types of active fibers with a large effective mode area (LMA) have been developed for high power scaling including LMA fibers with a low-aperture core,[16] micro-structured rod-type fiber [15][17] helical core [18] or chirally-coupled fibers,[19] and tapered double-clad fibers (T-DCF).[12] The mode field diameter (MFD) achieved with these low aperture technologies [15][16][17][18][19] usually does not exceed 20–30 μm. The micro-structured rod-type fiber has much larger MFD (up to 65 μm [20]) and good performance. An impressive 2.2 mJ pulse energy was demonstrated by a femtosecond MOPA [21] containing large-pitch fibers (LPF). However, the shortcoming of amplification systems with LPF is their relatively long (up to 1.2 m) unbendable rod-type fibers meaning a rather bulky and cumbersome optical scheme.[21] LPF fabrication is highly complex requiring significant processing such as precision drilling of the fiber pre-forms.  The LPF fibers are highly sensitive to bending meaning robustness and portability is compromised.

Mode locking

In addition to the types of mode locking used with other lasers, fiber lasers can be passively mode locked by using the birefringence of the fiber itself.[22] The non-linear optical Kerr effect causes a change in polarization that varies with the light's intensity. This allows a polarizer in the laser cavity to act as a saturable absorber, blocking low-intensity light but allowing high intensity light to pass with little attenuation. This allows the laser to form mode-locked pulses, and then the non-linearity of the fiber further shapes each pulse into an ultra-short optical soliton pulse.

Semiconductor saturable-absorber mirrors (SESAMs) can also be used to mode lock fiber lasers. A major advantage SESAMs have over other saturable absorber techniques is that absorber parameters can be easily tailored to meet the needs of a particular laser design. For example, saturation fluence can be controlled by varying the reflectivity of the top reflector while modulation depth and recovery time can be tailored by changing the low temperature growing conditions for the absorber layers. This freedom of design has further extended the application of SESAMs into modelocking of fiber lasers where a relatively high modulation depth is needed to ensure self-starting and operation stability. Fiber lasers working at 1 μm and 1.5 μm were successfully demonstrated.[23][24][25][26]

Graphene saturable absorbers have also been used for mode locking fiber lasers.[27][28][29] Graphene's saturable absorption is not very sensitive to wavelength, making it useful for mode locking tunable lasers.

Dark solitons

In the non-mode locking regime, a dark soliton fiber laser was successfully created using an all-normal dispersion erbium-doped fiber laser with a polarizer in-cavity. Experimental findings indicate that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations the dark pulse formation in the laser may be a result of dark soliton shaping.[30]

Multi-wavelength emission

Multi-wavelength emission in a fiber laser demonstrated simultaneous blue and green coherent light using ZBLAN optical fiber. The end-pumped laser was based on an upconversion optical gain media using a longer wavelength semiconductor laser to pump a Pr3+/Yb3+ doped fluoride fiber that used coated dielectric mirrors on each end of the fiber to form the cavity.[31]

Fiber disk lasers

Three fiber disk lasers

Another type of fiber laser is the fiber disk laser. In such lasers, the pump is not confined within the cladding of the fiber, but instead pump light is delivered across the core multiple times because it is coiled in on itself. This configuration is suitable for power scaling in which many pump sources are used around the periphery of the coil.[32][33][34][35]

Applications

Applications of fiber lasers include material processing, telecommunications, spectroscopy, medicine, and directed energy weapons.[36]

See also

References

  1. ^ "Growing adoption of laser cutting machine market in the US through 2021, due to the need for superior-quality products: Technavio". Business Wire. Feb 2, 2017. Retrieved 2020-02-08.
  2. ^ Shiner, Bill (Feb 1, 2016). "Fiber lasers continue to gain market share in material processing applications". SME.org. Retrieved 2020-02-08.
  3. ^ Shiner, Bill (Feb 1, 2006). "High-power fiber lasers gain market share". Industrial Laser Solutions for Manufacturing. Retrieved 2020-02-08.
  4. ^ Zervas, Michalis N.; Codemard, Christophe A. (September 2014). "High Power Fiber Lasers: A Review". IEEE Journal of Selected Topics in Quantum Electronics. 20 (5): 219–241. Bibcode:2014IJSTQ..20..219Z. doi:10.1109/JSTQE.2014.2321279. ISSN 1077-260X. S2CID 36779372.
  5. ^ Phillips, Katherine C.; Gandhi, Hemi H.; Mazur, Eric; Sundaram, S. K. (Dec 31, 2015). "Ultrafast laser processing of materials: a review". Advances in Optics and Photonics. 7 (4): 684–712. Bibcode:2015AdOP....7..684P. doi:10.1364/AOP.7.000684. ISSN 1943-8206.
  6. ^ S. Bedö; W. Lüthy; H. P. Weber (1993). "The effective absorption coefficient in double-clad fibers". Optics Communications. 99 (5–6): 331–335. Bibcode:1993OptCo..99..331B. doi:10.1016/0030-4018(93)90338-6.
  7. ^ A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers". Optics Communications. 132 (5–6): 511–518. Bibcode:1996OptCo.132..511A. doi:10.1016/0030-4018(96)00368-9.
  8. ^ Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers. 2: Broken circular symmetry". JOSA B. 39 (6): 1259–1263. Bibcode:2002JOSAB..19.1259K. doi:10.1364/JOSAB.19.001259.
  9. ^ Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers.3:Calculation of modes". JOSA B. 19 (6): 1304–1309. Bibcode:2002JOSAB..19.1304K. doi:10.1364/JOSAB.19.001304.
  10. ^ Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump". Optical Fiber Technology. 7 (4): 324–339. Bibcode:2001OptFT...7..324L. doi:10.1006/ofte.2001.0361.
  11. ^ D.Kouznetsov; J.Moloney (2004). "Boundary behaviour of modes of a Dirichlet Laplacian". Journal of Modern Optics. 51 (13): 1362–3044. Bibcode:2004JMOp...51.1955K. doi:10.1080/09500340408232504. S2CID 209833904.
  12. ^ a b Filippov, V.; Chamorovskii, Yu; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O. G. (2008-02-04). "Double clad tapered fiber for high power applications". Optics Express. 16 (3): 1929–1944. Bibcode:2008OExpr..16.1929F. doi:10.1364/OE.16.001929. ISSN 1094-4087. PMID 18542272.
  13. ^ Filippov, Valery; Kerttula, Juho; Chamorovskii, Yuri; Golant, Konstantin; Okhotnikov, Oleg G. (2010-06-07). "Highly efficient 750 W tapered double-clad ytterbium fiber laser". Optics Express. 18 (12): 12499–12512. Bibcode:2010OExpr..1812499F. doi:10.1364/OE.18.012499. ISSN 1094-4087. PMID 20588376.
  14. ^ "Many lasers become one in Lockheed Martin's 30kW fiber laser". Gizmag.com. 3 February 2014. Retrieved 2014-02-04.
  15. ^ a b c Müller, Michael; Kienel, Marco; Klenke, Arno; Gottschall, Thomas; Shestaev, Evgeny; Plötner, Marco; Limpert, Jens; Tünnermann, Andreas (2016-08-01). "1 kW 1 mJ eight-channel ultrafast fiber laser". Optics Letters. 41 (15): 3439–3442. arXiv:2101.08498. Bibcode:2016OptL...41.3439M. doi:10.1364/OL.41.003439. ISSN 1539-4794. PMID 27472588. S2CID 11678581.
  16. ^ a b Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew (2000-04-01). "Single-mode operation of a coiled multimode fiber amplifier". Optics Letters. 25 (7): 442–444. Bibcode:2000OptL...25..442K. doi:10.1364/OL.25.000442. ISSN 1539-4794. PMID 18064073.
  17. ^ a b Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J. (2005-02-21). "High-power rod-type photonic crystal fiber laser". Optics Express. 13 (4): 1055–1058. Bibcode:2005OExpr..13.1055L. doi:10.1364/OPEX.13.001055. ISSN 1094-4087. PMID 19494970.
  18. ^ a b Wang, P.; Cooper, L. J.; Sahu, J. K.; Clarkson, W. A. (2006-01-15). "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser". Optics Letters. 31 (2): 226–228. Bibcode:2006OptL...31..226W. doi:10.1364/OL.31.000226. ISSN 1539-4794. PMID 16441038.
  19. ^ a b Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W. (2011-02-14). "Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber". Optics Express. 19 (4): 3464–3470. Bibcode:2011OExpr..19.3464L. doi:10.1364/OE.19.003464. ISSN 1094-4087. PMC 3135632. PMID 21369169.
  20. ^ "AEROGAIN-ROD HIGH POWER YTTERBIUM ROD FIBER GAIN MODULES". Retrieved 14 January 2020.
  21. ^ a b Eidam, Tino; Rothhardt, Jan; Stutzki, Fabian; Jansen, Florian; Hädrich, Steffen; Carstens, Henning; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas (2011-01-03). "Fiber chirped-pulse amplification system emitting 3.8 GW peak power". Optics Express. 19 (1): 255–260. Bibcode:2011OExpr..19..255E. doi:10.1364/OE.19.000255. ISSN 1094-4087. PMID 21263564.
  22. ^ Li N.; Xue J.; Ouyang C.; Wu K.; Wong J. H.; Aditya S.; Shum P. P. (2012). "Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked all-fiber ring laser". Applied Optics. 51 (17): 3726–3730. Bibcode:2012ApOpt..51.3726L. doi:10.1364/AO.51.003726. hdl:10220/10097. PMID 22695649.
  23. ^ H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser" Archived 2011-07-07 at the Wayback Machine, Opt. Lett., 33, 2317–2319. (2008).
  24. ^ D.Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser" Archived 2010-01-20 at the Wayback Machine, Physical Review Letters, 101, 153904 (2008).
  25. ^ H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers", Optics Express, 16,12618–12623 (2008).
  26. ^ Zhang H.; et al. (2009). "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser". Optics Express. 17 (2): 12692–12697. arXiv:0907.1782. Bibcode:2009OExpr..1712692Z. doi:10.1364/oe.17.012692. PMID 19654674. S2CID 1512526.
  27. ^ Zhang, H; Tang, DY; Zhao, LM; Bao, QL; Loh, KP (28 September 2009). "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene". Optics Express. 17 (20): 17630–5. arXiv:0909.5536. Bibcode:2009OExpr..1717630Z. doi:10.1364/OE.17.017630. PMID 19907547. S2CID 207313024.
  28. ^ Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao; Kianping Loh (2009). "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters. 95 (14): P141103. arXiv:0909.5540. Bibcode:2009ApPhL..95n1103Z. doi:10.1063/1.3244206. S2CID 119284608. Archived from the original (PDF) on 2011-07-17.
  29. ^ [1] Archived February 19, 2012, at the Wayback Machine
  30. ^ Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X. (27 October 2009). "Dark pulse emission of a fiber laser" (PDF). Physical Review A. 80 (4): 045803. arXiv:0910.5799. Bibcode:2009PhRvA..80d5803Z. doi:10.1103/PhysRevA.80.045803. S2CID 118581850. Archived from the original (PDF) on 2011-07-17.
  31. ^ Baney, D. M., Rankin, G., Change, K. W. "Simultaneous blue and green upconversion lasing in a diode-pumped Pr3+/Yb3+ doped fluoride fiber laser,"Appl. Phys. Lett, vol. 69 No 12, pp. 1622-1624, Sept 1996.
  32. ^ Ueda, Ken-ichi (1998). Kudryashov, Alexis V.; Galarneau, Pierre (eds.). "Optical cavity and future style of high-power fiber lasers". Proceedings. Laser Resonators. 3267 (Laser Resonators): 14–22. Bibcode:1998SPIE.3267...14U. doi:10.1117/12.308104. S2CID 136018975.
  33. ^ K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output". 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009). Vol. 2. pp. 788–789. doi:10.1109/leos.1999.811970. ISBN 978-0-7803-5634-4. S2CID 120732530. {{cite book}}: |journal= ignored (help)
  34. ^ Ueda; Sekiguchi H.; Matsuoka Y.; Miyajima H.; H.Kan (1999). "Conceptual design of kW-class fiber-embedded disk and tube lasers". Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464). Vol. 2. Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE. pp. 217–218. doi:10.1109/CLEOPR.1999.811381. ISBN 978-0-7803-5661-0. S2CID 30251829.
  35. ^ Hamamatsu Photonics K.K. Laser group (2006). "The Fiber Disk Laser explained". Nature Photonics. sample: 14–15. doi:10.1038/nphoton.2006.6.
  36. ^ Popov, S. (2009). "7: Fiber laser overview and medical applications". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). New York: CRC.

Read other information related to :Fiber laser/

Fiber Fiber crop Fiber to the x Optical fiber Dietary fiber Fiber laser Metallic fiber Double-clad fiber Fiber-optic cable Fiber art Fiber-optic adapter Fiber Bragg grating Stripping (fiber) Fiber cable termination Cleave (fiber) All-silica fiber Natural fiber Photonic-crystal fiber Glass fiber Fiber-optic communication T-Fiber Polarization-maintaining optical fiber Multi-mode optical fiber Single-mode optical fiber Plastic optical fiber Open Fiber Fiber tapping Google Fiber Acrylic fiber Optical fiber connector Carbon-fiber reinforced polymer Fiber bundle Fiber roll Fiber management system Ce…

llulose fiber Core (optical fiber) Hybrid fiber-coaxial Fiber One Carbon fibers Synthetic fiber Reissner's fiber Fiber to the telecom enclosure Fiber-optic sensor Non-zero dispersion-shifted fiber Hydrogel fiber The Fiber Optic Association Type II sensory fiber Graded-index fiber Fiber-optic filter Commissural fiber Quartz fiber Fiber-optic display Olefin fiber Type Ia sensory fiber Small fiber peripheral neuropathy Fiber (mathematics) Seifert fiber space Fiber media converter Fiber-reinforced concrete Extrafusal muscle fiber Mossy fiber (cerebellum) Mossy fiber Hard-clad silica optical fiber Dispersion-shifted fiber Fiber-optic splitter Yak fiber Fiber photometry Microstructured optical fiber Climbing fiber Optical Fiber Technology Bicomponent fiber Alpaca fiber Tailored fiber placement Radio over fiber Group A nerve fiber Fiber-optic patch cord Fibered manifold Section (fiber bundle) Fiber-reinforced composite Automated fiber placement Power-over-fiber Group C nerve fiber Intrafusal muscle fiber Fiber type Fiber-reinforced cementitious matrix Postganglionic nerve fibers Afferent nerve fiber General somatic afferent fiber Fiber functor Optical fiber, nonconductive, riser M5 fiber

Read other articles:

Заголовок цієї статті — японське ім'я. Воно складається з прізвища та особового імені, яке слідує за ним: іменем цієї особи є Тацухіко, а прізвищем — Кубо. Тацухіко Кубо Особисті дані Народження 18 червня 1976(1976-06-18) (47 років)   Фукуока, Японія Зріст 181 см Громадянство  Япон

Kate HoweyBiographieNaissance 31 mai 1973 (50 ans)AndoverNationalité britanniqueActivité JudokateAutres informationsTaille 1,7 mSport JudoDistinction Membre de l'ordre de l'Empire britanniquemodifier - modifier le code - modifier Wikidata Kate Howey, née le 31 mai 1973, est une ancienne judokate britannique qui s'illustrait dans la catégorie des poids moyen (-66 kg jusqu'en 1998, -70 kg depuis). Elle se révèle en 1989 en remportant le titre européen dans la catégorie junio…

Partai Sosialis Yaman الحزب الاشتراكي اليمنيSekretaris UmumAbdulraham Al-SaqqafPendiriAbdul Fattah Ismail, Ali Nashir Muhammad, Ali Salem al BeidhDibentuk1978[1]Didahului olehFront Pembebasan NasionalKantor pusatAden, YamanIdeologiSosialisme IslamDemokrasi sosialNasionalisme Arab1978-1990:KomunismeMarxisme-LeninismePosisi politikKiri tengah sampai sayap kiriAfiliasi internasionalAliansi Progresif,Sosialis InternasionalWarna  MerahDewan Perwakilan8 / 301…

1976 film by Robert Moore For the rock band, see Murder by Death (band). Murder by DeathTheatrical release posterDirected byRobert MooreWritten byNeil SimonProduced byRay StarkStarringEileen BrennanTruman CapoteJames CocoPeter FalkAlec GuinnessElsa LanchesterDavid NivenPeter SellersMaggie SmithNancy WalkerEstelle WinwoodCinematographyDavid M. WalshEdited byMargaret BoothJohn F. BurnettMusic byDave GrusinProductioncompanyRastarDistributed byColumbia PicturesRelease date June 23, 1976…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Mata MengeLokasi di FloresLokasiFlores, IndonesiaWilayahCekungan So'aKoordinat8°41′31″S 121°05′43″E / 8.69194°S 121.09528°E / -8.69194; 121.09528Koordinat: 8°41′31″S 121°05′43″E / 8.69194°S 12…

Nouadhibou انواذيبوKomune dan kotaJalan di NouadhibouNegara MauritaniaRegionRegion Dakhlet NouadhibouKetinggian0 m (0 ft)Populasi (Sensus 2013) • Total118.167 Nouadhibou (Arab: نواذيبو), Bahasa Berber: Nwādībū, sebelumnya disebut dalam Bahasa Prancis: Port-Étienne) merupakan sebuah kota di Mauritania. Kota ini terletak di bagian barat di negara itu. Tepatnya di Region Dakhlet Nouadhibou. Pada tahun 2013, kota ini memiliki jumlah penduduk sebesar …

Multi-sport event in Accra, Ghana XIII African GamesHost cityAccraNations53 (expected)Opening8 March 2024 (2024-03-08)Closing23 March 2024 (2024-03-23)Opened byTBDMain venueAccra Borteyman Olympic Standard Stadium (50,000)[1]WebsiteAccra2023ag.com← 2019 Rabat2027 Windhoek → The 13th African Games are expected to be held in Ghana between 8 and 23 March 2024.[2] This is the second time in history that the games will be decentraliz…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 黒獣 〜気高き聖女は白濁に染まる〜 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年12月) 黒獣 〜気高き聖女は…

Romanian professional footballer Nicolae Florescu Florescu in 1975Personal informationDate of birth (1949-11-14)14 November 1949Place of birth Codlea, RomaniaDate of death 21 September 2011(2011-09-21) (aged 61)Place of death Codlea, RomaniaHeight 1.82 m (6 ft 0 in)Position(s) ForwardYouth career1963–1967 Colorom CodleaSenior career*Years Team Apps (Gls)1967–1972 Steagul Roșu Brașov 107 (35)1972–1983 Bihor Oradea 230 (26)1979 → Înfrățirea Oradea (loan) 1983–198…

Overslag Dorp in België Situering Gewest Vlaanderen Provincie Oost-Vlaanderen Gemeente Wachtebeke Coördinaten 51° 12′ NB, 3° 53′ OL Algemeen Inwoners 600 Detailkaart Locatie in Oost-Vlaanderen Foto's Onze-Lieve-Vrouw Geboortekerk Portaal    België Overslag is een dorp in het noorden van de Belgische provincie Oost-Vlaanderen, op de grens met Nederland. Het ligt op het grondgebied van de gemeente Wachtebeke; een deel van het dorp ligt echter op Nederlands grondgebied, w…

Conflict in ancient India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kalinga War – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how…

Species of mammal Black pika Conservation status Data Deficient (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Lagomorpha Family: Ochotonidae Genus: Ochotona Species: O. nigritia Binomial name Ochotona nigritiaGong, Wang, Li & Li, 2000 Black pika range The black pika or silver pika (Ochotona nigritia) is a species of mammal in the family Ochotonidae. It was thought to be common to the Yunnan Province of Ch…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Retrogore – news · newspapers · books · scholar · JSTOR (April 2016) 2016 studio album by AbortedRetrogoreStudio album by AbortedReleasedApril 22, 2016 (2016-04-22)RecordedDecember 2015 at Kohlekeller Studios GermanyGenreDeath meta…

Olympic shooting event Men's 300 metre free rifle, three positionsat the Games of the XVII OlympiadVasily Borisov, Hubert Hammerer and Hans Rudolf SpillmannVenueCesano Infantry School RangeDates3 September (qualifying)5 September (final)Competitors39 from 22 nationsWinning score1129Medalists Hubert Hammerer Austria Hans Rudolf Spillmann Switzerland Vasily Borisov Soviet Union← 19561964 → Shooting at the1960 Summer OlympicsRifle300 m rifle three posi…

Muscle relaxant drug InaperisoneClinical dataATC codeNoneIdentifiers IUPAC name 1-(4-Ethylphenyl)-2-methyl-3-(1-pyrrolidinyl)-1-propanone CAS Number99323-21-4PubChem CID65860ChemSpider59271UNII0QAC3P785OChEMBLChEMBL1797127CompTox Dashboard (EPA)DTXSID60869332 Chemical and physical dataFormulaC16H23NOMolar mass245.366 g·mol−13D model (JSmol)Interactive image SMILES CCC1=CC=C(C=C1)C(=O)C(C)CN2CCCC2 InChI InChI=1S/C16H23NO/c1-3-14-6-8-15(9-7-14)16(18)13(2)12-17-10-4-5-11-17/h6-9,13H,3-5,10-…

Johann Nepomuk Fuchs Johann Nepomuk Fuchs (* 5. Mai 1842 in Frauenthal, Steiermark; † 5. Oktober 1899 in Bad Vöslau, Niederösterreich)[1][2][3][4][5] war ein österreichischer Komponist und Kapellmeister. Inhaltsverzeichnis 1 Leben 2 Werke 2.1 Werke für Blasorchester 3 Weblinks 4 Einzelnachweise Leben Johann Nepomuk Fuchs, Bruder des Komponisten Robert Fuchs, hatte als Dirigent in Preßburg, Brünn, Köln, Hamburg und Leipzig gearbeitet und wurde 1880…

2005 single by Morning MusumeOsaka Koi no UtaSingle by Morning Musumefrom the album Rainbow 7 ReleasedApril 27, 2005Recorded2005GenreJ-popelectropopdance-popLength11:37LabelZetimaProducer(s)TsunkuMorning Musume singles chronology The Manpower!!! (2005) Osaka Koi no Uta (2005) Iroppoi Jirettai (2005) Music videoOsaka Koi no Uta on YouTube Osaka Koi no Uta (大阪 恋の歌, Osaka Love Song) was the twenty-sixth single of J-pop girl group Morning Musume, from the group's seventh album Rainbow 7.…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Mom and Sister – news · newspapers · books · scholar · JSTOR (December 2009) Mom and Sister (also known as Mother and Sisters and Oh, Mother! Oh, Sister!) is a South Korean television series that aired on MBC from November 4, 2000 to April 22, 2001. The …

This article's plot summary may be too long or excessively detailed. Please help improve it by removing unnecessary details and making it more concise. (May 2019) (Learn how and when to remove this template message) 1993 novel by Irvine Welsh Trainspotting First editionAuthorIrvine WelshCountryScotlandPublisherSecker & WarburgPublication date1993Media typePrint (hardback and paperback)Pages344ISBN0-7493-9606-7OCLC34832527Dewey Decimal823/.914 20LC ClassPR6073.E47 T73 1994Followed&#…

For the song, see Hard Day. For the 2021 film, see A Hard Day (2021 film). 2014 South Korean filmA Hard DayTheatrical posterHangul끝까지 간다Revised RomanizationKkeutkkaji GandaMcCune–ReischauerKkŭtkkaji Kanda Directed byKim Seong-hunWritten byKim Seong-hunProduced byCha Ji-hyeon Jang Won-seokStarringLee Sun-kyun Cho Jin-woongCinematographyKim Tae-seongEdited byKim Chang-juMusic byMok Young-jinProductioncompaniesAD406 Dasepo ClubDistributed byShowbox/MediaplexRelease dates May 18,&#…

Kembali kehalaman sebelumnya