Föppl–von Kármán equations

The Föppl–von Kármán equations, named after August Föppl[1] and Theodore von Kármán,[2] are a set of nonlinear partial differential equations describing the large deflections of thin flat plates.[3] With applications ranging from the design of submarine hulls to the mechanical properties of cell wall,[4] the equations are notoriously difficult to solve, and take the following form: [5]

where E is the Young's modulus of the plate material (assumed homogeneous and isotropic), υ is the Poisson's ratio, h is the thickness of the plate, w is the out–of–plane deflection of the plate, P is the external normal force per unit area of the plate, σαβ is the Cauchy stress tensor, and α, β are indices that take values of 1 and 2 (the two orthogonal in-plane directions). The 2-dimensional biharmonic operator is defined as[6]

Equation (1) above can be derived from kinematic assumptions and the constitutive relations for the plate. Equations (2) are the two equations for the conservation of linear momentum in two dimensions where it is assumed that the out–of–plane stresses (σ33,σ13,σ23) are zero.

Validity of the Föppl–von Kármán equations

While the Föppl–von Kármán equations are of interest from a purely mathematical point of view, the physical validity of these equations is questionable.[7] Ciarlet[8] states: The two-dimensional von Karman equations for plates, originally proposed by von Karman [1910], play a mythical role in applied mathematics. While they have been abundantly, and satisfactorily, studied from the mathematical standpoint, as regards notably various questions of existence, regularity, and bifurcation, of their solutions, their physical soundness has been often seriously questioned. Reasons include the facts that

  1. the theory depends on an approximate geometry which is not clearly defined
  2. a given variation of stress over a cross-section is assumed arbitrarily
  3. a linear constitutive relation is used that does not correspond to a known relation between well defined measures of stress and strain
  4. some components of strain are arbitrarily ignored
  5. there is a confusion between reference and deformed configurations which makes the theory inapplicable to the large deformations for which it was apparently devised.

Conditions under which these equations are actually applicable and will give reasonable results when solved are discussed in Ciarlet.[8][9]

Equations in terms of Airy stress function

The three Föppl–von Kármán equations can be reduced to two by introducing the Airy stress function where

Equation (1) becomes[5]

while the Airy function satisfies, by construction the force balance equation (2). An equation for is obtained enforcing the representation of the strain as a function of the stress. One gets [5]

Pure bending

For the pure bending of thin plates the equation of equilibrium is , where

is called flexural or cylindrical rigidity of the plate.[5]

Kinematic assumptions (Kirchhoff hypothesis)

In the derivation of the Föppl–von Kármán equations the main kinematic assumption (also known as the Kirchhoff hypothesis) is that surface normals to the plane of the plate remain perpendicular to the plate after deformation. It is also assumed that the in-plane (membrane) displacements are small and the change in thickness of the plate is negligible. These assumptions imply that the displacement field u in the plate can be expressed as[10]

in which v is the in-plane (membrane) displacement. This form of the displacement field implicitly assumes that the amount of rotation of the plate is small.

Strain-displacement relations (von Kármán strains)

The components of the three-dimensional Lagrangian Green strain tensor are defined as

Substitution of the expressions for the displacement field into the above gives

For small strains but moderate rotations, the higher order terms that cannot be neglected are

Neglecting all other higher order terms, and enforcing the requirement that the plate does not change its thickness, the strain tensor components reduce to the von Kármán strains

The first terms are the usual small-strains, for the mid-surface. The second terms, involving squares of displacement gradients, are non-linear, and need to be considered when the plate bending is fairly large (when the rotations are about 10 – 15 degrees). These first two terms together are called the membrane strains. The last terms, involving second derivatives, are the flexural (bending) strains. They involve the curvatures. These zero terms are due to the assumptions of the classical plate theory, which assume elements normal to the mid-plane remain inextensible and line elements perpendicular to the mid-plane remain normal to the mid-plane after deformation.

Stress–strain relations

If we assume that the Cauchy stress tensor components are linearly related to the von Kármán strains by Hooke's law, the plate is isotropic and homogeneous, and that the plate is under a plane stress condition,[11] we have σ33 = σ13 = σ23 = 0 and

Expanding the terms, the three non-zero stresses are

Stress resultants

The stress resultants in the plate are defined as

Therefore,

the elimination of the in-plane displacements leads to

and

Solutions are easier to find when the governing equations are expressed in terms of stress resultants rather than the in-plane stresses.

Equations of Equilibrium

The weak form of the Kirchhoff plate is

here Ω denotes the mid-plane. The weak form leads to

The resulting governing equations are

Föppl–von Kármán equations in terms of stress resultants

The Föppl–von Kármán equations are typically derived with an energy approach by considering variations of internal energy and the virtual work done by external forces. The resulting static governing equations (Equations of Equilibrium) are

When the deflections are small compared to the overall dimensions of the plate, and the mid-surface strains are neglected,

.

The equations of equilibrium are reduced (pure bending of thin plates) to

.

References

  1. ^ Föppl, A., "Vorlesungen über technische Mechanik", B.G. Teubner, Bd. 5., p. 132, Leipzig, Germany (1907)
  2. ^ von Kármán, T., "Festigkeitsproblem im Maschinenbau," Encyk. D. Math. Wiss. IV, 311–385 (1910)
  3. ^ Cerda, E.; Mahadevan, L. (19 February 2003). "Geometry and Physics of Wrinkling". Physical Review Letters. 90 (7). American Physical Society (APS): 074302. Bibcode:2003PhRvL..90g4302C. doi:10.1103/physrevlett.90.074302. hdl:10533/174540. ISSN 0031-9007. PMID 12633231.
  4. ^ David Harris (11 February 2011). "Focus: Simplifying Crumpled Paper". Physical Review Focus. Vol. 27. Retrieved 4 February 2020.
  5. ^ a b c d "Theory of Elasticity". L. D. Landau, E. M. Lifshitz, (3rd ed. ISBN 0-7506-2633-X)
  6. ^ The 2-dimensional Laplacian, Δ, is defined as
  7. ^ von Karman plate equations http://imechanica.org/node/6618 Accessed Tue July 30 2013 14:20.
  8. ^ a b Ciarlet, P. G. (1990), Plates and Junctions in Elastic Multi-Structures, Springer-Verlag.
  9. ^ Ciarlet, Philippe G. (1980), "A justification of the von Kármán equations", Archive for Rational Mechanics and Analysis, 73 (4): 349–389, Bibcode:1980ArRMA..73..349C, doi:10.1007/BF00247674, S2CID 120433309
  10. ^ Ciarlet, Philippe G. (1980), "A justification of the von Kármán equations", Archive for Rational Mechanics and Analysis, 73 (4): 349–389, Bibcode:1980ArRMA..73..349C, doi:10.1007/BF00247674, S2CID 120433309
  11. ^ Typically, an assumption of zero out-of-plane stress is made at this point.

See also

Read other articles:

جبل كوتونوود سلسله جبليه  البلد [1] التقسيم الاعلى اوريجون  إحداثيات جغرافيه 44°10′07″N 117°39′43″W / 44.1685°N 117.662°W / 44.1685; -117.662  الارتفاع تعديل  بوابة جغرافيا جبل كوتونوود (Cottonwood Mountain) هيا سلسله جبليه فى امريكا. المكان جبل كوتونوود موجوده فى منطقه اداريه اسمها او...

 

American actor (1933–2023) Robert BlakeBlake in 1977BornMichael James Gubitosi(1933-09-18)September 18, 1933Nutley, New Jersey, U.S.DiedMarch 9, 2023(2023-03-09) (aged 89)Los Angeles, California, U.S.Other namesBobby BlakeLyman P. DockerMickey GubitosiOccupationActorYears active1939–1997Spouses Sondra Kerr ​ ​(m. 1961; div. 1983)​ Bonny Lee Bakley ​ ​(m. 2000; died 2001)​ Pamela ...

 

Store-Kari Klippa Land  Bouvetön Koordinater 54°23′15″S 3°22′38″Ö / 54.3875°S 3.37722°Ö / -54.3875; 3.37722 Tidszon CET (UTC+1)  - sommartid CEST (UTC+2) Geonames 3371098 Store-Kari är en klippa utanför Bouvetön (Norge). Den ligger 1,2 km öster om Bouvetöns nordligaste punkt, Kap Valdivia.[1] Källor ^ http://stadnamn.npolar.no/stadnamn/Store-Kari?ident=902130 Stadnamn i norske polarområde

?Добаш зебровий Охоронний статус Найменший ризик (МСОП 3.1)[1] Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Птахи (Aves) Ряд: Дятлоподібні (Piciformes) Родина: Дятлові (Picidae) Рід: Добаш (Picumnus) Вид: Добаш зебровий Біноміальна назв...

 

Campeonato AsiáticoAtletismo 2017 Provas de pista 100 m masc fem 200 m masc fem 400 m masc fem 800 m masc fem 1500 m masc fem 5000 m masc fem 10000 m masc fem 100 m com barreiras fem 110 m com barreiras masc 400 m com barreiras masc fem 3000 mcom obstáculos masc fem Revezamento 4×100 m masc fem Revezamento 4×400 m masc fem Provas de campo Salto em distância masc fem Salto triplo masc fem Salto em altura masc fem Salto com vara masc fem Arremesso de peso masc fem Lançamento de da...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menamba...

Activity done by an astronaut or cosmonaut outside a spacecraft Spacewalk redirects here. For other uses, see Spacewalk (disambiguation). Cosmonaut Sergey Volkov works outside the International Space Station on August 3, 2011. Stephen Robinson riding the Canadarm2 during STS-114 on August 3, 2005. The first in-flight repair of the Space Shuttle. The landmass in the backdrop is the Bari region of Somalia. Extravehicular activity (EVA) is any activity done by an astronaut in outer space outside...

 

Senato della RepubblicaSenat der Republik Basisdaten Sitz: Palazzo Madama,Rom Italien Italien Legislaturperiode: 5 Jahre Abgeordnete: 200 + derzeit 6 Senatoren auf Lebenszeit Aktuelle Legislaturperiode Letzte Wahl: 25. September 2022 Vorsitz: Ignazio La Russa (FdI) Sitzverteilung: Regierung (115) FdI 65 Lega 30 FI 18 NM 2 Opposition (85) PD-IDP 40 M5S 28 A-IV 9 A 4 IV 5 AVS 4 EV 1 SI 2 ...

 

У турнірі команд другої ліги брали участь 46 команд, які були розділені на 3 групи: Група А Група Б Група В «Буковина» (Чернівці) «Верес» (Рівне) «Газовик-Скала» (Стрий) «Галичина» (Дрогобич) «Динамо-3» (Київ) ▬ «Енергетик» (Бурштин) «Карпати-3» (Львів) «Ковель-Волинь-2» (Ковель) ...

Siren is an upcoming Tamil-language film written and directed by Antony Bhagyaraj, in his debut. It is produced by Sujatha Vijayakumar under Home Movie Makers and stars Jayam Ravi, Keerthy Suresh and Anupama Parameswaran in the lead role. 2023 Indian filmSirenDirected byAntony BhagyarajWritten byAntony BhagyarajProduced bySujatha VijayakumarStarring Jayam Ravi Keerthy Suresh Anupama Parameswaran CinematographySelvakumar S. K.Edited byRubenMusic byG. V. Prakash KumarProductioncompanyHome Movie...

 

Burundi nos Jogos Olímpicos de Verão da Juventude de 2010 Comitê Olímpico Nacional Código do COI BDI Nome Comité National Olympique du Burundi Jogos Olímpicos de Verão da Juventude de 2010 Sede Singapura Competidores 4 em 1 esporte Porta-bandeira Zabulon Ndikumana[1] Medalhas Pos.n/d 0 0 0 0 Participações nos Jogos Olímpicos Verão 1996 • 2000 • 2004 • 2008 • 2012 • 2016 • 2020 O Burundi participou dos Jogos Olímpicos de Verão da Juventude de 2010 em Singapu...

 

Liebeck v. McDonald's Restaurants Titre Stella Liebeck v. McDonald's Restaurants, P.T.S., Inc. and McDonald's International, Inc Pays États-Unis Tribunal en Date 1994-08-18 Personnalités Composition de la cour Robert H. Scott Détails juridiques Territoire d’application États-Unis Branche droit civil Voir aussi modifier  Le procès Liebeck contre McDonald's est un procès entre l'enseigne de restauration rapide McDonald's et une cliente, Stella Liebeck, au sujet de brûlures au seco...

Horst Buchholz (1961) in: Eins, zwei, drei Horst Buchholz (1950er Jahre) Berliner Gedenktafel am Haus Sodtkestraße 11 in Berlin-Prenzlauer Berg Horst Werner Buchholz (* 4. Dezember 1933 in Berlin; † 3. März 2003 ebenda) war ein deutscher Schauspieler und Synchronsprecher. Inhaltsverzeichnis 1 Leben 2 Privates 3 Auszeichnungen 4 Filmografie (Auswahl) 5 Hörspiele (Auswahl) 6 Literatur 7 TV-Dokumentation 8 Weblinks 9 Einzelnachweise Leben Horst Werner Buchholz wurde als Sohn von Maria Hasen...

 

1975 picture book Why Mosquitoes Buzz in People's Ears AuthorVerna AardemaIllustratorLeo and Diane DillonCover artistDillonsCountryUnited StatesGenreChildren's picture bookPublisherDial BooksPublication date1975ISBN0-8037-6089-2OCLC1094805Dewey Decimal[398.2] ELC ClassPZ8.1.A213 Wh Why Mosquitoes Buzz in People's Ears: A West African Tale is a 1975 children's picture book by Verna Aardema and illustrated by Leo and Diane Dillon. Published in hardcover by Dial Books for Young Readers...

 

1975 filmThe GypsyDirected byJosé GiovanniScreenplay byJosé GiovanniBased onHistoire de fou1959 novelby José GiovanniProduced byRaymond DanonAlain DelonStarringAlain DelonAnnie GirardotPaul MeurisseCinematographyJean-Jacques TarbèsEdited byJacqueline ThiédotMusic byClaude Bolling Django ReinhardtRelease date 1975 (1975) Running time102 minutesLanguageFrench The Gypsy (French: Le Gitan, Italian: Lo zingaro) is a 1975 French-Italian crime-drama film written and directed by José Giova...

Untuk tempat lain yang bernama sama, lihat Dawuhan. DawuhanDesaNegara IndonesiaProvinsiJawa TengahKabupatenBrebesKecamatanSirampogKode pos52272Kode Kemendagri33.29.05.2004 Luas16km²Jumlah penduduk6566 jiwaKepadatan410.4 jiwa/km² Dawuhan adalah desa di Kecamatan Sirampog, Kabupaten Brebes, Jawa Tengah, Indonesia. Terletak di sisi paling Timur Kecamatan Sirampog. Desa Dawuhan terdiri dari empat dusun, yaitu sebagai berikut. Dusun I terdiri dari satu RW & satu dukuh. Dukuh Paingan, te...

 

St. John's Red Storm Universidad Universidad St. John'sLiga División I de la NCAAConferencia principal Big East ConferenceEquipos 16Equipos masculinos 7Equipos femeninos 9Director deportivo Chris MonaschApodo(s) Red StormMascota Johnny ThunderbirdHimno(s) Fight For Old St. John'sColores      Rojo       BlancoInstalacionesFútbol Belson StadiumBéisbol Jack Kaiser StadiumBaloncesto Carnesecca Arena y Madison Square Garden Web oficial ...

 

1965 Italian filmGideon and Samson: Great Leaders of the BibleDirected byMarcello Baldi and Francisco Pérez-DolzWritten byOttavio Jemma, Flavio Nicolini, Marcello Baldi, Tonino GuerraMusic byTeo UsuelliRelease date 1965 (1965) CountryItalyLanguageItalian Gideon and Samson: Great Leaders of the Bible (or I grandi condottieri) is a 1965 Italian historical film directed by Marcello Baldi and Francisco Pérez-Dolz. Consisting of two segments, the first half tells the story of Gideon, while ...

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Gary Lake. 50°00′11″N 91°12′58″W / 50.00313°N 91.21619°W / 50.00313; -91.21619 Gary Lake Lanaw Nasod  Kanada Lalawigan Ontario Kondado Kenora District Gitas-on 403 m (1,322 ft) Tiganos 50°00′11″N 91°12′58″W / 50.00313°N 91.21619°W / 50.00313; -91.21619 Area 0.93 km2 (0 sq mi) Timezone CST (UTC-6)  - summer (DST) CDT&#...

 

An brat an t-siltich An t-Sultain 21, 1889, iris Puck, foillseachadh an samhail an dealbhadaire, Tom Merry, an marbhaiche neo-aithnichte Whitechapel Seoc an Reubainnear. Tha Seoc an Reubainnear 'na ainm-brèige air thoirt ri marbhaiche lean-phungach (no marbhaichean) neo-aithnichte anns an àite gu mòr bochdainnichte Whitechapel an Lunnainn anns an darna leth de 1888. Tha an t-ainm air ghabhail à litir ris a' Bhuidheann Meadhanach na Naidheachd le cuideigin a' tagradh a bhith an marbhaiche,...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!