In statistics, an errors-in-variables model or a measurement error model is a regression model that accounts for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.[citation needed]
In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples. For simple linear regression the effect is an underestimate of the coefficient, known as the attenuation bias. In non-linear models the direction of the bias is likely to be more complicated.[1][2][3]
Consider a simple linear regression model of the form
where x t ∗ {\displaystyle x_{t}^{*}} denotes the true but unobserved regressor. Instead, we observe this value with an error:
where the measurement error η t {\displaystyle \eta _{t}} is assumed to be independent of the true value x t ∗ {\displaystyle x_{t}^{*}} . A practical application is the standard school science experiment for Hooke's law, in which one estimates the relationship between the weight added to a spring and the amount by which the spring stretches. If the y t {\displaystyle y_{t}} ′s are simply regressed on the x t {\displaystyle x_{t}} ′s (see simple linear regression), then the estimator for the slope coefficient is
which converges as the sample size T {\displaystyle T} increases without bound:
This is in contrast to the "true" effect of β {\displaystyle \beta } , estimated using the x t ∗ {\displaystyle x_{t}^{*}} ,:
Variances are non-negative, so that in the limit the estimated β ^ x {\displaystyle {\hat {\beta }}_{x}} is smaller than β ^ {\displaystyle {\hat {\beta }}} , an effect which statisticians call attenuation or regression dilution.[4] Thus the ‘naïve’ least squares estimator β ^ x {\displaystyle {\hat {\beta }}_{x}} is an inconsistent estimator for β {\displaystyle \beta } . However, β ^ x {\displaystyle {\hat {\beta }}_{x}} is a consistent estimator of the parameter required for a best linear predictor of y {\displaystyle y} given the observed x t {\displaystyle x_{t}} : in some applications this may be what is required, rather than an estimate of the 'true' regression coefficient β {\displaystyle \beta } , although that would assume that the variance of the errors in the estimation and prediction is identical. This follows directly from the result quoted immediately above, and the fact that the regression coefficient relating the y t {\displaystyle y_{t}} ′s to the actually observed x t {\displaystyle x_{t}} ′s, in a simple linear regression, is given by
It is this coefficient, rather than β {\displaystyle \beta } , that would be required for constructing a predictor of y {\displaystyle y} based on an observed x {\displaystyle x} which is subject to noise.
It can be argued that almost all existing data sets contain errors of different nature and magnitude, so that attenuation bias is extremely frequent (although in multivariate regression the direction of bias is ambiguous[5]). Jerry Hausman sees this as an iron law of econometrics: "The magnitude of the estimate is usually smaller than expected."[6]
Usually, measurement error models are described using the latent variables approach. If y {\displaystyle y} is the response variable and x {\displaystyle x} are observed values of the regressors, then it is assumed there exist some latent variables y ∗ {\displaystyle y^{*}} and x ∗ {\displaystyle x^{*}} which follow the model's "true" functional relationship g ( ⋅ ) {\displaystyle g(\cdot )} , and such that the observed quantities are their noisy observations:
where θ {\displaystyle \theta } is the model's parameter and w {\displaystyle w} are those regressors which are assumed to be error-free (for example, when linear regression contains an intercept, the regressor which corresponds to the constant certainly has no "measurement errors"). Depending on the specification these error-free regressors may or may not be treated separately; in the latter case it is simply assumed that corresponding entries in the variance matrix of η {\displaystyle \eta } 's are zero.
The variables y {\displaystyle y} , x {\displaystyle x} , w {\displaystyle w} are all observed, meaning that the statistician possesses a data set of n {\displaystyle n} statistical units { y i , x i , w i } i = 1 , … , n {\displaystyle \left\{y_{i},x_{i},w_{i}\right\}_{i=1,\dots ,n}} which follow the data generating process described above; the latent variables x ∗ {\displaystyle x^{*}} , y ∗ {\displaystyle y^{*}} , ε {\displaystyle \varepsilon } , and η {\displaystyle \eta } are not observed, however.
This specification does not encompass all the existing errors-in-variables models. For example, in some of them, function g ( ⋅ ) {\displaystyle g(\cdot )} may be non-parametric or semi-parametric. Other approaches model the relationship between y ∗ {\displaystyle y^{*}} and x ∗ {\displaystyle x^{*}} as distributional instead of functional; that is, they assume that y ∗ {\displaystyle y^{*}} conditionally on x ∗ {\displaystyle x^{*}} follows a certain (usually parametric) distribution.
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.[10]
The simple linear errors-in-variables model was already presented in the "motivation" section:
where all variables are scalar. Here α and β are the parameters of interest, whereas σε and ση—standard deviations of the error terms—are the nuisance parameters. The "true" regressor x* is treated as a random variable (structural model), independent of the measurement error η (classic assumption).
This model is identifiable in two cases: (1) either the latent regressor x* is not normally distributed, (2) or x* has normal distribution, but neither εt nor ηt are divisible by a normal distribution.[11] That is, the parameters α, β can be consistently estimated from the data set ( x t , y t ) t = 1 T {\displaystyle \scriptstyle (x_{t},\,y_{t})_{t=1}^{T}} without any additional information, provided the latent regressor is not Gaussian.
Before this identifiability result was established, statisticians attempted to apply the maximum likelihood technique by assuming that all variables are normal, and then concluded that the model is not identified. The suggested remedy was to assume that some of the parameters of the model are known or can be estimated from the outside source. Such estimation methods include[12]
Estimation methods that do not assume knowledge of some of the parameters of the model, include
where (n1,n2) are such that K(n1+1,n2) — the joint cumulant of (x,y) — is not zero. In the case when the third central moment of the latent regressor x* is non-zero, the formula reduces to
The multivariable model looks exactly like the simple linear model, only this time β, ηt, xt and x*t are k×1 vectors.
In the case when (εt,ηt) is jointly normal, the parameter β is not identified if and only if there is a non-singular k×k block matrix [a A], where a is a k×1 vector such that a′x* is distributed normally and independently of A′x*. In the case when εt, ηt1,..., ηtk are mutually independent, the parameter β is not identified if and only if in addition to the conditions above some of the errors can be written as the sum of two independent variables one of which is normal.[15]
Some of the estimation methods for multivariable linear models are
where ∘ {\displaystyle \circ } designates the Hadamard product of matrices, and variables xt, yt have been preliminarily de-meaned. The authors of the method suggest to use Fuller's modified IV estimator.[17]
A generic non-linear measurement error model takes form
Here function g can be either parametric or non-parametric. When function g is parametric it will be written as g(x*, β).
For a general vector-valued regressor x* the conditions for model identifiability are not known. However, in the case of scalar x* the model is identified unless the function g is of the "log-exponential" form[20]
and the latent regressor x* has density
where constants A,B,C,D,E,F may depend on a,b,c,d.
Despite this optimistic result, as of now no methods exist for estimating non-linear errors-in-variables models without any extraneous information. However, there are several techniques which make use of some additional data: either the instrumental variables, or repeated observations.
where π0 and σ0 are (unknown) constant matrices, and ζt ⊥ zt. The coefficient π0 can be estimated using standard least squares regression of x on z. The distribution of ζt is unknown; however, we can model it as belonging to a flexible parametric family – the Edgeworth series:
where ϕ is the standard normal distribution.
Simulated moments can be computed using the importance sampling algorithm: first we generate several random variables {vts ~ ϕ, s = 1,…,S, t = 1,…,T} from the standard normal distribution, then we compute the moments at t-th observation as
where θ = (β, σ, γ), A is just some function of the instrumental variables z, and H is a two-component vector of moments
In this approach two (or maybe more) repeated observations of the regressor x* are available. Both observations contain their own measurement errors; however, those errors are required to be independent:
where x* ⊥ η1 ⊥ η2. Variables η1, η2 need not be identically distributed (although if they are efficiency of the estimator can be slightly improved). With only these two observations it is possible to consistently estimate the density function of x* using Kotlarski's deconvolution technique.[22]
where it would be possible to compute the integral if we knew the conditional density function ƒx*|x. If this function could be known or estimated, then the problem turns into standard non-linear regression, which can be estimated for example using the NLLS method. Assuming for simplicity that η1, η2 are identically distributed, this conditional density can be computed as
where with slight abuse of notation xj denotes the j-th component of a vector. All densities in this formula can be estimated using inversion of the empirical characteristic functions. In particular,
To invert these characteristic function one has to apply the inverse Fourier transform, with a trimming parameter C needed to ensure the numerical stability. For example:
where wt represents variables measured without errors. The regressor x* here is scalar (the method can be extended to the case of vector x* as well). If not for the measurement errors, this would have been a standard linear model with the estimator
where
It turns out that all the expected values in this formula are estimable using the same deconvolution trick. In particular, for a generic observable wt (which could be 1, w1t, …, wℓ t, or yt) and some function h (which could represent any gj or gigj) we have
where φh is the Fourier transform of h(x*), but using the same convention as for the characteristic functions,
and
{{cite book}}
{{cite journal}}