Electronic entropy

Electronic entropy is the entropy of a system attributable to electrons' probabilistic occupation of states. This entropy can take a number of forms. The first form can be termed a density of states based entropy. The Fermi–Dirac distribution implies that each eigenstate of a system, i, is occupied with a certain probability, pi. As the entropy is given by a sum over the probabilities of occupation of those states, there is an entropy associated with the occupation of the various electronic states. In most molecular systems, the energy spacing between the highest occupied molecular orbital and the lowest unoccupied molecular orbital is usually large, and thus the probabilities associated with the occupation of the excited states are small. Therefore, the electronic entropy in molecular systems can safely be neglected. Electronic entropy is thus most relevant for the thermodynamics of condensed phases, where the density of states at the Fermi level can be quite large, and the electronic entropy can thus contribute substantially to thermodynamic behavior.[1][2] A second form of electronic entropy can be attributed to the configurational entropy associated with localized electrons and holes.[3] This entropy is similar in form to the configurational entropy associated with the mixing of atoms on a lattice.

Electronic entropy can substantially modify phase behavior, as in lithium-ion battery electrodes,[3] high temperature superconductors,[4][5] and some perovskites.[6] It is also the driving force for the coupling of heat and charge transport in thermoelectric materials, via the Onsager reciprocal relations.[7]

From the density of states

General Formulation

The entropy due to a set of states that can be either occupied with probability or empty with probability can be written as:

,

where kB is Boltzmann constant.

For a continuously distributed set of states as a function of energy, such as the eigenstates in an electronic band structure, the above sum can be written as an integral over the possible energy values, rather than a sum. Switching from summing over individual states to integrating over energy levels, the entropy can be written as:

where n(E) is the density of states of the solid. The probability of occupation of each eigenstate is given by the Fermi function, f:

where EF is the Fermi energy and T is the absolute temperature. One can then re-write the entropy as:

This is the general formulation of the density-of-states based electronic entropy.

Useful approximation

It is useful to recognize that the only states within ~±kBT of the Fermi level contribute significantly to the entropy. Other states are either fully occupied, f = 1, or completely unoccupied, f = 0. In either case, these states do not contribute to the entropy. If one assumes that the density of states is constant within ±kBT of the Fermi level, one can derive that the electron heat capacity, equal to:[8]

where n(EF) is the density of states (number of levels per unit energy) at the Fermi level. Several other approximations can be made, but they all indicate that the electronic entropy should, to first order, be proportional to the temperature and the density of states at the Fermi level. As the density of states at the Fermi level varies widely between systems, this approximation is a reasonable heuristic for inferring when it may be necessary to include electronic entropy in the thermodynamic description of a system; only systems with large densities of states at the Fermi level should exhibit non-negligible electronic entropy (where large may be approximately defined as n(EF) ≥ (k2
B
T)−1
).

Application to different materials classes

Insulators have zero density of states at the Fermi level due to their band gaps. Thus, the density of states-based electronic entropy is essentially zero in these systems.

Metals have non-zero density of states at the Fermi level. Metals with free-electron-like band structures (e.g. alkali metals, alkaline earth metals, Cu, and Al) generally exhibit relatively low density of states at the Fermi level, and therefore exhibit fairly low electronic entropies. Transition metals, wherein the flat d-bands lie close to the Fermi level, generally exhibit much larger electronic entropies than the free-electron like metals.

Oxides have particularly flat band structures and thus can exhibit large n(EF), if the Fermi level intersects these bands. As most oxides are insulators, this is generally not the case. However, when oxides are metallic (i.e. the Fermi level lies within an unfilled, flat set of bands), oxides exhibit some of the largest electronic entropies of any material.

Thermoelectric materials are specifically engineered to have large electronic entropies. The thermoelectric effect relies on charge carriers exhibiting large entropies, as the driving force to establish a gradient in electrical potential is driven by the entropy associated with the charge carriers. In the thermoelectric literature, the term band structure engineering refers to the manipulation of material structure and chemistry to achieve a high density of states near the Fermi level. More specifically, thermoelectric materials are intentionally doped to exhibit only partially filled bands at the Fermi level, resulting in high electronic entropies.[9] Instead of engineering band filling, one may also engineer the shape of the band structure itself via introduction of nanostructures or quantum wells to the materials.[10][11][12][13]

Configurational electronic entropy

Configurational electronic entropy is usually observed in mixed-valence transition metal oxides, as the charges in these systems are both localized (the system is ionic), and capable of changing (due to the mixed valency). To a first approximation (i.e. assuming that the charges are distributed randomly), the molar configurational electronic entropy is given by:[3]

where nsites is the fraction of sites on which a localized electron/hole could reside (typically a transition metal site), and x is the concentration of localized electrons/holes. Of course, the localized charges are not distributed randomly, as the charges will interact electrostatically with one another, and so the above formula should only be regarded as an approximation to the configurational atomic entropy. More sophisticated approximations have been made in the literature.[3]

References

  1. ^ Wolverton, Chris; Zunger, Alex (15 September 1995). "First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys". Physical Review B. 52 (12): 8813–8828. Bibcode:1995PhRvB..52.8813W. doi:10.1103/PhysRevB.52.8813. PMID 9979872.
  2. ^ Nicholson, D. M. C.; Stocks, G. M.; Wang, Y.; Shelton, W. A.; Szotec, Z.; Temmerman, W. M. (15 November 1994). "Stationary nature of the density-functional free energy: Application to accelerated multiple-scattering calculations". Physical Review B. 50 (19): 14686–14689. Bibcode:1994PhRvB..5014686N. doi:10.1103/PhysRevB.50.14686. PMID 9975710.
  3. ^ a b c d Zhou, Fei; Maxisch, Thomas; Ceder, Gerbrand (2006). "Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of LixFePO4". Physical Review Letters. 97 (15): 155704. arXiv:cond-mat/0612163. Bibcode:2006PhRvL..97o5704Z. doi:10.1103/PhysRevLett.97.155704. PMID 17155339. S2CID 119385806.
  4. ^ Schleger, P.; Hardy, W. N.; Casalta, H. (1 January 1994). "Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x: Inclusion of electron spin and charge degrees of freedom". Physical Review B. 49 (1): 514–523. Bibcode:1994PhRvB..49..514S. doi:10.1103/PhysRevB.49.514. PMID 10009312.
  5. ^ Tétot, R.; Pagot, V.; Picard, C. (1 June 1999). "Thermodynamics of YBa2Cu3O6+x: Predictions of the asymmetric next-nearest-neighbor Ising model versus experimental data". Physical Review B. 59 (22): 14748. Bibcode:1999PhRvB..5914748T. doi:10.1103/PhysRevB.59.14748.
  6. ^ Lankhorst, Martijn. H. R.; Bouwmeester, H. J. M.; Verweij, H. (2 March 1997). "Importance of electronic band structure to nonstoichiometric behaviour of La0.8Sr0.2CoO3 − δ". Solid State Ionics. 96 (1–2): 21–27. doi:10.1016/S0167-2738(96)00620-0.
  7. ^ Balluffi, Robert W.; Allen, Samuel M.; Carter, W. Craig (2005). Kinetics of Materials (1st ed.). John Wiley & Sons. p. 28. doi:10.1002/0471749311. ISBN 9780471246893.
  8. ^ Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics. New York: Holt, Rinehart and Winston. p. 53-54. ISBN 0030839939.
  9. ^ Pei, Yanzhong; Wang, Heng; Snyder, G. J. (17 October 2012). "Band Engineering of Thermoelectric Materials". Advanced Materials. 24 (46): 6125–6135. Bibcode:2012AdM....24.6125P. doi:10.1002/adma.201202919. PMID 23074043. S2CID 197277148.
  10. ^ Hicks, L. D.; Dresselhaus, M. S. (15 June 1993). "Thermoelectric figure of merit of a one-dimensional conductor". Physical Review B. 47 (24): 16631–16634. Bibcode:1993PhRvB..4716631H. doi:10.1103/PhysRevB.47.16631. PMID 10006109.
  11. ^ Hicks, L. D.; Dresselhaus, M. S. (15 May 1993). "Effect of quantum-well structures on the thermoelectric figure of merit". Physical Review B. 47 (19): 12727–12731. Bibcode:1993PhRvB..4712727H. doi:10.1103/PhysRevB.47.12727. PMID 10005469.
  12. ^ Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S. (15 April 1996). "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit". Physical Review B. 53 (16): R10493 – R10496. Bibcode:1996PhRvB..5310493H. doi:10.1103/PhysRevB.53.R10493. PMID 9982714.
  13. ^ Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J.-P.; Gogna, P. (20 April 2007). "New Directions for Low-Dimensional Thermoelectric Materials". Advanced Materials. 19 (8): 1043–1053. Bibcode:2007AdM....19.1043D. doi:10.1002/adma.200600527. S2CID 31648320.

Read other articles:

Penguin kaisar Status konservasi Hampir Terancam (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Sphenisciformes Famili: Spheniscidae Genus: Aptenodytes Spesies: A. forsteri Nama binomial Aptenodytes forsteriGray, 1844 Habitat Penguin KaisarKoloni berkembang biak berwarna hijau Penguin kaisar yang mempunyai nama latin Aptenodytes forsteri, termasuk jenis yang terbesar di antara famili penguin, yaitu dengan tinggi badan mencapai lebih dar...

 

Towns and villages in Hungary Hungary has 3,152 municipalities as of July 15, 2013: 346 towns (Hungarian term: város, plural: városok; the terminology does not distinguish between cities and towns – the term town is used in official translations) and 2,806 villages (Hungarian: község, plural: községek) of which 126 are classified as large villages (Hungarian: nagyközség, plural: nagyközségek). The number of towns can change, since villages can be elevated to town status by act of ...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lullaby of Broadway album – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) 1951 soundtrack album by Doris DayLullaby of BroadwaySoundtrack album by Doris DayReleasedMarch 5, 1951RecordedDecember 4–8...

Pramuka Penggalang melakukan pawai obor Penggalang adalah sebuah tingkatan dalam pramuka setelah siaga. Biasanya anggota pramuka tingkat penggalang berusia dari 11-15 tahun. Tingkatan dalam Penggalang Berdasarkan pencapaian Syarat-syarat Kecakapan Umum Pramuka Penggalang dapat digolongkan dalam beberapa tingkatan, yaitu: Penggalang Ramu Penggalang Rakit Penggalang Terap Penggalang Garuda Tingkatan Penggalang juga memiliki Syarat-syarat Kecakapan Umum (SKU) dan Syarat-syarat Kecakapan Khusus (...

 

Theater performed in Chicago, Illinois For the theater building at 175 North State Street built in 1921, see Chicago Theatre. The Chicago Theatre The Auditorium Theatre Theater in Chicago describes not only theater performed in Chicago, Illinois, but also to the movement in Chicago that saw a number of small, meagerly funded companies grow to institutions of national and international significance. Chicago had long been a popular destination for touring productions, as well as original produc...

 

Dieser Artikel befasst sich mit dem Hirten als Nutztierhüter. Für weitere Bedeutungen siehe Hirte (Begriffsklärung). Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Schafhirte in Italien Der Hirte und die Herde Berittene Hirten, Herde und Schäferhund in Patagoni...

Painting by Ambrogio Lorenzetti The Allegory of Good and Bad GovernmentItalian: Allegoria ed effetti del Buono e del Cattivo GovernoDetail of Allegory of Good GovernmentArtistAmbrogio LorenzettiYear1338MediumFrescoMovementGothic art, Sienese SchoolSubjectAllegorical depictions of good and bad governmentDimensions7.7 x 14.4m (room)[1]LocationPalazzo Pubblico, Siena, ItalyOwnerFondazione Musei Senesi The Bad Government on the left; The Good Government in the center The Allegory of Good ...

 

This article may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structure. (February 2021) (Learn how and when to remove this template message) 1979 song by SpizzenergiWhere's Captain Kirk?Song by SpizzenergiLanguageEnglishReleasedDecember 1979GenrePunk rockLength2:17LabelRough Trade RecordsSongwriter(s) Spizz Mark Coalfield Music videoWhere's Captain Kirk on YouTube Where's Captain Kirk? is a 1...

 

رسم بياني يوضح طيف امتصاص الماء السائل عبر نطاق عريض من الطول الموجي. تمثل حزم الامتصاص الرئيسية بالمنحنى ذي اللون الأزرق والذي يمثل الطيف الشمسي فوق الغلاف الجوي الذي ينفذ إلى سطح الأرض (ويمثله المنحنى البرتقالي). تقوم جزيئات الماء بامتصاص أجزاء من الطيف الكهرومغناطيسي خ...

Bangladeshi singer and music composer Belal Khanবেলাল খানBornNalua, Sakhipur, Tangail, BangladeshNationalityBangladeshiYears active2006-presentAwardsNational Film Awards (2014), 45th Bangladesh National Film Awards (2020) Belal Khan is a Bangladeshi singer, songwriter and music composer.[1][2][3] Belal Khan is born in Nalua village of Sakhipur in Tangail district. He was awarded 39th Bangladesh National Film Awards (2014) for Best Music Composition...

 

2010 studio album by Dan SartainDan Sartain LivesStudio album by Dan SartainReleasedMay 31, 2010Genrerock and roll, rockabilly, bluesLength30:31LabelOne Little IndianDan Sartain chronology Join Dan Sartain(2006) Dan Sartain Lives(2010) Legacy of Hospitality(2011) Professional ratingsReview scoresSourceRatingAllMusic[1]Clash7/10[2]Drowned in Sound7/10[3]PopMatters6/10[4] Dan Sartain Lives is the fifth album by the Birmingham, Alabama rock musician Dan Sa...

 

Indian artist Not to be confused with A. Ramachandran, the incumbent Mayor of Salem,Tamil Nadu.A. RamachandranRamachandran in 2012Honorary Chairman ofKerala Lalithakala AkademiIn office1991–? Personal detailsBornAchutan Ramachandran Nair1935 (age 87–88)Attingal, Travancore(now Kerala), British IndiaCitizenshipIndianNationalityMalayaliSpouseTan Yuan ChameliRelationsTan Yun-Shan (father-in-law)Residence(s)New Delhi, IndiaEducationMA (in Malayalam literature)PhD (in Kerala mural pai...

2nd-century BC Greek astronomerFor the genus of moths, see Aglaonice (moth). AglaoniceOther namesAganice of ThessalyEra2nd or 1st century BCKnown forGreek astronomer, thaumaturge Aglaonice or Aganice of Thessaly (Ancient Greek: Ἀγλαονίκη, Aglaoníkē, compound of αγλαὸς (aglaòs) luminous and νίκη (nikē) victory) was a Greek astronomer and thaumaturge of the 2nd or 1st century BC.[1] She is mentioned in the writings of Plutarch[2] and in th...

 

Finnish Eurodance musician (born 1967) WaldoBackground informationBirth nameMarko ReijonenBorn1967OriginHelsinki, FinlandGenresEurodanceOccupation(s)Singer, songwriterInstrument(s)VocalYears active1995–presentLabelsBlue bubbleWebsiteOfficial siteMusical artist Waldo (born Marko Reijonen, 1967) is a Finnish Eurodance musician. His solo hits, sang in Jamaican accent, are It's About Time and Feel So Good in 1995. The number of sales of the album It's About Time was certified as gold record in ...

 

US college sports conference American Athletic ConferenceFormerlyBig East (1979–2013)AssociationNCAAFoundedMay 31, 1979; 44 years ago (1979-05-31) (de jure)July 1, 2013; 10 years ago (2013-07-01) (de facto)[note 1]CommissionerMichael Aresco (since 2012)Sports fielded 22 men's: 10 women's: 12 DivisionDivision ISubdivisionFBSNo. of teams14 (full) + 8 (affiliate)HeadquartersIrving, TexasOfficial websitewww.theamerican.orgLocationsStates with full mem...

Dolok JiorDesaPeta lokasi Desa Dolok JiorNegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanSigumparKode pos22381Kode Kemendagri12.12.19.2006 Luas1,70 km²Jumlah penduduk622 jiwa (2015)Kepadatan363,53 jiwa/km² Dolok Jior adalah salah satu desa di Kecamatan Sigumpar, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Dolok Jior pada tahun 2020 adalah Mangarerak Siregar.[1] Sosial Kemasyarakatan Suku Mayoritas penduduk Desa Dolok Jior adalah suku...

 

2018 compilation album by Virgin SteeleSeven Devils MoonshineCompilation album by Virgin SteeleReleasedNovember 23, 2018GenreHeavy metal, power metalLabelSPV/SteamhammerProducerDavid DeFeisVirgin Steele chronology Nocturnes of Hellfire & Damnation(2015) Seven Devils Moonshine(2018) The Passion of Dionysus(2023) Professional ratingsReview scoresSourceRatingAllMusic[1] Seven Devils Moonshine is a five-disc box set by the American heavy metal band Virgin Steele, comprising th...

 

American disc jockey and actor (1932–2014) Casey KasemKasem at the 1989 Emmy AwardsBornKemal Amin Kasem(1932-04-27)April 27, 1932Detroit, Michigan, U.S.DiedJune 15, 2014(2014-06-15) (aged 82)Gig Harbor, Washington, U.S.Resting placeOslo Western Civil Cemetery, Oslo, NorwayAlma materWayne State UniversityOccupationsDisc jockeyactorradio presenteractivistYears active1954–2013Spouses Linda Myers ​ ​(m. 1972; div. 1979)​ Jean Thom...

Stefano Bonaccini Stefano Bonaccini (lahir 1 Januari 1967) adalah seorang politikus Italia dan anggota Partai Demokrat. Ia menjabat sebagai Presiden Emilia-Romagna sejak 24 November 2014.[1] Referensi ^ Emilia Romagna, Bonaccini presidente. Ma vota solo un emiliano su tre

 

ليستة ملكات جمال العالم[1][2] الليسته الاسم الاسم الاجنبى السنه بلد المواطنه الصوره كيكى هاكانسون (Kiki Håkansson) 1951 السويد ماى لويز فلودين (May-Louise Flodin) 1952 السويد دينيسى بيرير (Denise Perrier) 1953 فرنسا انتيجون كوستاندا (Antigone Costanda) 1954 مصر سوسانا دويچم (Susana Duijm) 1955 ڤينيزويلا بيترا شور...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!