Elasticity tensor

The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material.[1][2] Other names are elastic modulus tensor and stiffness tensor. Common symbols include and .

The defining equation can be written as

where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied.[note 1] This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.

A general fourth-rank tensor in 3D has 34 = 81 independent components , but the elasticity tensor has at most 21 independent components.[3] This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential. For isotropic materials, the elasticity tensor has just two independent components, which can be chosen to be the bulk modulus and shear modulus.[3]

Definition

The most general linear relation between two second-rank tensors is

where are the components of a fourth-rank tensor .[1][note 1] The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.

The compliance tensor is defined from the inverse stress-strain relation:

The two are related by

where is the Kronecker delta.[4][5][note 2]

Unless otherwise noted, this article assumes is defined from the stress-strain relation of a linear elastic material, in the limit of small strain.

Special cases

Isotropic

For an isotropic material, simplifies to

where and are scalar functions of the material coordinates , and is the metric tensor in the reference frame of the material.[6][7] In an orthonormal Cartesian coordinate basis, there is no distinction between upper and lower indices, and the metric tensor can be replaced with the Kronecker delta:

Substituting the first equation into the stress-strain relation and summing over repeated indices gives

where is the trace of . In this form, and can be identified with the first and second Lamé parameters. An equivalent expression is

where is the bulk modulus, and

are the components of the shear tensor .

Cubic crystals

The elasticity tensor of a cubic crystal has components

where , , and are unit vectors corresponding to the three mutually perpendicular axes of the crystal unit cell.[8] The coefficients , , and are scalars; because they are coordinate-independent, they are intrinsic material constants. Thus, a crystal with cubic symmetry is described by three independent elastic constants.[9]

In an orthonormal Cartesian coordinate basis, there is no distinction between upper and lower indices, and is the Kronecker delta, so the expression simplifies to

Other crystal classes

There are similar expressions for the components of in other crystal symmetry classes.[10] The number of independent elastic constants for several of these is given in table 1.[9]

Table 1: Number of independent elastic constants for various crystal symmetry classes.[9]
Crystal family Point group Independent components
Triclinic 21
Monoclinic 13
Orthorhombic 9
Tetragonal C4, S4, C4h 7
Tetragonal C4v, D2d, D4, D4h 6
Rhombohedral C3, S6 7
Rhombohedral C3v, D6, D3d 6
Hexagonal 5
Cubic 3

Properties

Symmetries

The elasticity tensor has several symmetries that follow directly from its defining equation .[11][2] The symmetry of the stress and strain tensors implies that

Usually, one also assumes that the stress derives from an elastic energy potential :

which implies

Hence, must be symmetric under interchange of the first and second pairs of indices:

The symmetries listed above reduce the number of independent components from 81 to 21. If a material has additional symmetries, then this number is further reduced.[9]

Transformations

Under rotation, the components transform as

where are the covariant components in the rotated basis, and are the elements of the corresponding rotation matrix. A similar transformation rule holds for other linear transformations.

Invariants

The components of generally acquire different values under a change of basis. Nevertheless, for certain types of transformations, there are specific combinations of components, called invariants, that remain unchanged. Invariants are defined with respect to a given set of transformations, formally known as a group operation. For example, an invariant with respect to the group of proper orthogonal transformations, called SO(3), is a quantity that remains constant under arbitrary 3D rotations.

possesses two linear invariants and seven quadratic invariants with respect to SO(3).[12] The linear invariants are

and the quadratic invariants are

These quantities are linearly independent, that is, none can be expressed as a linear combination of the others. They are also complete, in the sense that there are no additional independent linear or quadratic invariants.[12]

Decompositions

A common strategy in tensor analysis is to decompose a tensor into simpler components that can be analyzed separately. For example, the displacement gradient tensor can be decomposed as

where is a rank-0 tensor (a scalar), equal to the trace of ; is symmetric and trace-free; and is antisymmetric.[13] Component-wise,

Here and later, symmeterization and antisymmeterization are denoted by and , respectively. This decomposition is irreducible, in the sense of being invariant under rotations, and is an important tool in the conceptual development of continuum mechanics.[11]

The elasticity tensor has rank 4, and its decompositions are more complex and varied than those of a rank-2 tensor.[14] A few examples are described below.

M and N tensors

This decomposition is obtained by symmeterization and antisymmeterization of the middle two indices:

where

A disadvantage of this decomposition is that and do not obey all original symmetries of , as they are not symmetric under interchange of the first two indices. In addition, it is not irreducible, so it is not invariant under linear transformations such as rotations.[2]

Irreducible representations

An irreducible representation can be built by considering the notion of a totally symmetric tensor, which is invariant under the interchange of any two indices. A totally symmetric tensor can be constructed from by summing over all permutations of the indices

where is the set of all permutations of the four indices.[2] Owing to the symmetries of , this sum reduces to

The difference

is an asymmetric tensor (not antisymmetric). The decomposition can be shown to be unique and irreducible with respect to . In other words, any additional symmetrization operations on or will either leave it unchanged or evaluate to zero. It is also irreducible with respect to arbitrary linear transformations, that is, the general linear group .[2][15]

However, this decomposition is not irreducible with respect to the group of rotations SO(3). Instead, decomposes into three irreducible parts, and into two:

See Itin (2020)[15] for explicit expressions in terms of the components of .

This representation decomposes the space of elasticity tensors into a direct sum of subspaces:

with dimensions

These subspaces are each isomorphic to a harmonic tensor space .[15][16] Here, is the space of 3D, totally symmetric, traceless tensors of rank . In particular, and correspond to , and correspond to , and corresponds to .

See also

Footnotes

  1. ^ a b Here, upper and lower indices denote contravariant and covariant components, respectively, though the distinction can be ignored for Cartesian coordinates. As a result, some references represent components using only lower indices.
  2. ^ Combining the forward and inverse stress-strain relations gives Eij = Kijpq CpqklEkl. Due to the minor symmetries Cpqkl = Cqpkl and Cpqkl = Cpqlk, this equation does not uniquely determine Kijpq Cpqkl. In fact, Kijpq Cpqkl = a δkiδlj + (1 − a) δliδkj is a solution for any 0 ≤ a ≤ 1. However, only a = 1/2 preserves the minor symmetries of K, so this is the correct solution from a physical standpoint.

References

Bibliography

Read other articles:

Accordo franco-italianoContestoVittoria dell'Italia della prima guerra mondiale e richiesta di territori nelle colonie, come stabilito dal Patto di Londra. Firma7 gennaio 1935 LuogoPalazzo Venezia, Roma CondizioniCessione della Striscia di Aozou e di Rahayta dalla Francia all'Italia Parti Italia Francia FirmatariBenito MussoliniPierre Laval voci di trattati presenti su Wikipedia L'accordo franco-italiano (chiamato comunemente accordo Mussolini-Laval o trattato Mussolini-Laval) è stato u...

 

1936 film by Albert Ray Undercover ManTheatrical release posterDirected byAlbert RayScreenplay byAndrew BennisonStory byAndrew BennisonProduced byA. W. HackelStarringJohnny Mack BrownSuzanne KaarenTed AdamsFrank DarienHorace MurphyLloyd IngrahamCinematographyJack GreenhalghEdited byDan MilnerProductioncompanySupreme Pictures CorporationDistributed byRepublic PicturesRelease date September 24, 1936 (1936-09-24) Running time57 minutesCountryUnited StatesLanguageEnglish Undercover...

 

Logo Telkom Money (T-Money), sebuah layanan keuangan digital dari Telkom Indonesia. Telkom Money (disebut juga t-money) adalah produk layanan keuangan digital berupa uang elktronik dari PT Telekomunikasi Indonesia. Fungsi dari t-money adalah sebagai medium yang memungkinkan pengguna untuk melakukan transaksi, pengiriman uang, penarikan uang, membayar tagihan, dan lain sebagainya.[1] Jenis layanan Telkom memnyediakan tiga jenis perantara pelayanan t-money: secara daring {t-money online...

Seri Dragon BallGambar sampul Perlawanan Manusia Planet Namec.MangaAlbum nomor22EpisodeFrieza SagaDidahului olehMenuju Planet NamecDiikuti denganPasukan Ginyu yang MenakutkanDiterbitkan di Jepang1984Diterbitkan di Indonesia1993 Perlawanan Manusia Planet Namec adalah jilid ke-22 manga Dragon Ball. Pada jilid ini, para penghuni planet Namec berusaha keras bersatu melawan para penakluk yang ingin mencari Dragon Ball di planet mereka. Mereka bersama-sama Goku dan kawan-kawannya melawan Frieza, Ve...

 

Caso BonoTribunal Juzgado de Instrucción n.º 42Caso 223/05Fecha 25 de enero de 2005Sentencia 8 de mayo de 2006Transcripción enlace sentencia[editar datos en Wikidata] El caso Bono hace referencia a la detención de dos militantes del Partido Popular el 25 de enero de 2005 bajo la acusación de haber agredido al ministro de Defensa del primer Gobierno Zapatero (PSOE), José Bono, durante una manifestación convocada por la Asociación Víctimas del Terrorismo el 22 de enero de 200...

 

(von links nach rechts) Maurice Bowra, Sylvester Govett Gates und L. P. Hartley Sir Cecil Maurice Bowra (* 8. April 1898 in Jiujiang, China; † 4. Juli 1971 in Oxford) war ein britischer Klassischer Philologe. Leben und Wirken Cecil Maurice Bowra wurde als Sohn eines in chinesischen Diensten stehenden britischen Zollbeamten in Jiujiang am Jangtsekiang in China geboren. Er verbrachte seine Jugend ab 1903 in seiner britischen Heimat. Ab 1917 leistete er als Second Lieutenant der Royal Field Ar...

Pada nama Vietnam ini, nama keluarga-nya adalah Nguyễn. Menurut kebiasaan Vietnam, tokoh ini dipanggil dengan nama pemberian-nya Quân. Nguyen Quoc QuanNguyen Quoc Quan berpidato di konferensi VietnamNama asalNguyễn Quốc QuânLahir20 November 1953 (umur 70)VietnamKebangsaanVietnam-AmerikaPekerjaanpeneliti matematikaDikenal atasaktivis demokrasiSitus webwww.viettan.org Dr. Nguyen Quoc Quan (bahasa Vietnam: Nguyễn Quốc Quân, lahir 20 November 1953) adalah seorang peneli...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. OlonkinbyentownKoordinat: 70°55′19″N 8°42′54″W / 70.92194°N 8.71500°W / 70.92194; -8.71500Populasi • Total18 Olonkinbyen atau Kota Olonkin (bahasa Norwegia: Olonkinbyen) adalah salah satu dari dua per...

 

Герб Голої Пристані ДеталіНосій Гола Пристань Герб Го́лої При́стані — офіційний геральдичний символ міста Голої Пристані Херсонської області. Зміст 1 Опис 2 Значення символів 3 Див. також 4 Джерела Опис Герб міста складається з трьох основних частин: Квітка лілія (осно...

Charioteer of the sun god in Hindu mythology Aruṇa redirects here. For other uses, see Aruna (disambiguation). ArunaA painter depicting Aruna driving the chariot of the sun god SuryaGenderMalePersonal informationParentsKashyapa (father)Vinata (mother)SiblingsGarudaConsortShyeniChildrenSampati and Jatayu (sons) Aruna (Sanskrit: अरुण) is the charioteer of Surya (Sun god) in Hinduism.[1] He is the elder brother of Garuda. Aruna and Garuda are the sons of Vedic sage Kashyapa and...

 

Sint-Martinuskerk De Sint-Martinuskerk is de parochiekerk van Houthalen, aan het Sint-Martinusplein, in de Belgische gemeente Houthalen-Helchteren. Geschiedenis De kerk werd voor het eerst vermeld in 1223, maar de parochie is waarschijnlijk ouder. Oorspronkelijk stond hier een romaanse kerk, maar begin 15e eeuw begon men met de bouw van een nieuwe, gotische, kerk. Het koor werd in 1437 opgericht, getuige de inscriptie: int iaer ons heren MCCCCXXXVII waert desen coer ghefondeert. Omstreeks 150...

 

Japanese electronics company Omron CorporationOmron headquarters in Kyoto, JapanNative nameオムロン株式会社Romanized nameOmuron Kabushiki-gaishaTypePublic K.K.Traded asTYO: 6645FWB: OMRIndustryElectronicsFoundedMay 10, 1933; 90 years ago (1933-05-10) [O.S. April 27] Osaka, JapanFounderKazuma TateishiHeadquartersShiokoji Horikawa, Shimogyo-ku, Kyoto 600-8530, JapanArea servedWorldwideKey peopleYoshihito Yamada(President and CEO), Hideki Tripp(Vice President and C...

Adelheid van Saksen-Meiningen Adelheid Arna Caroline Marie van Saksen-Meiningen (Kassel, 16 augustus 1891 - La Tour-de-Peilz, 25 april 1971) was een prinses uit het Huis Wettin. Zij was een dochter van Frederik van Saksen-Meiningen en diens vrouw Adelheid van Lippe-Biesterfeld. Zelf trouwde ze op 3 augustus 1914 met prins Adalbert van Pruisen, een zoon van de laatste Duitse keizer Wilhelm II en diens vrouw Augusta Victoria. Tijdens de Eerste Wereldoorlog diende haar man bij de Duitse marine. ...

 

« Pithecanthropus erectus » redirige ici. Pour l'album de jazz, voir Pithecanthropus Erectus. Homme de Java Dessin d'un crâne d'homme de Javapar Eugène Dubois en 1922. Coordonnées 7° 22′ 27″ sud, 111° 21′ 28″ est Pays Indonésie Île Java Kabupaten Ngawi Vallée Solo Localité voisine Trinil Période géologique Pléistocène moyen Époque géologique Paléolithique inférieur Découvert le 1891 Découvreur(s) Eugène Dubois Particularit...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: A Night at the Opera – berita · surat kabar · buku · cendekiawan · JSTOR A Night at the OperaBerkas:Queen A Night At The Opera.pngAlbum studio karya QueenDirilis21 November 1975 (Inggris)DirekamAgust...

2008 Japanese filmPersonaFilm posterKanjiペルソナ Directed byTatsuro KashiharaKenji TanigakiWritten byTatsuro KashiharaStarringMami YamasakiKoji MoritsuguKumiko NakanoMasato HagiwaraAkira OtakaProductioncompaniesCREi, KIC-Factory, Persona Film PartnersRelease date January 26, 2008 (2008-01-26) Running time84 minutesCountryJapanLanguageJapanese Persona (ペルソナ, Perusona) is a 2008 film written and directed by Tatsuro Kashihara.[1] The film premiered on January ...

 

Renan Silva Informasi pribadiNama lengkap Renan da SilvaTanggal lahir 2 Januari 1989 (umur 34)Tempat lahir Rio de Janeiro, BrasilTinggi 176 cm (5 ft 9 in)Posisi bermain Gelandang serangInformasi klubKlub saat ini Persik KediriNomor 10Karier junior2000–2010 FlamengoKarier senior*Tahun Tim Tampil (Gol)2011 Vitória 1 (0)2011 Olaria 16 (6)2012 Boavista 4 (1)2012 Rapid Bucureşti 5 (3)2013 Petrolul Ploiești 12 (1)2013 Al-Nahda 11 (3)2014 Macaé 4 (0)2014 Songkhla United 12 ...

 

Mathematician Haya Freedman Haya Freedman (1923–2005) was a Polish-born Israeli mathematician known for her research on the Tamari lattice[1] and on ring theory, and as an exceptionally gifted teacher of mathematics at the London School of Economics.[2] Early life and education Haya Freedman was born in Lviv, which at that time was part of Poland, and at the age of ten moved to Mandatory Palestine. She earned a master's degree from the Hebrew University of Jerusalem, studyin...

2005 film by Luca Guadagnino Melissa P.Italian theatrical release posterDirected byLuca GuadagninoScreenplay by Barbara Alberti Cristiana Farina Luca Guadagnino Story by Luca Guadagnino Christiana Farina Based on100 colpi di spazzola prima di andare a dormireby Melissa PanarelloProduced by Francesca Neri Claudio Amendola José Ibáñez Starring María Valverde Fabrizia Sacchi Primo Reggiani Nilo Mur Elio Germano Letizia Ciampa Davide Pasti Alba Rohrwacher Piergiorgio Bellocchio Giulio Berruti...

 

Serbian footballer and manager Zoran Mirković Mirković in 2018Personal informationDate of birth (1971-09-21) 21 September 1971 (age 52)Place of birth Belgrade, SFR YugoslaviaHeight 1.82 m (5 ft 11+1⁄2 in)Position(s) DefenderSenior career*Years Team Apps (Gls)1989–1990 Radnički Svilajnac 15 (0)1990–1993 Rad 62 (1)1993–1996 Partizan 82 (1)1996–1998 Atalanta 52 (0)1998–2000 Juventus 27 (0)2000–2003 Fenerbahçe 71 (3)2004–2006 Partizan 46 (2)Total 355 (7...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!