The dynamic energy budget (DEB) theory is a formal metabolic theory which provides a single quantitative framework to dynamically describe the aspects of metabolism (energy and mass budgets) of all living organisms at the individual level, based on assumptions about energy uptake, storage, and utilization of various substances.[1][2][3][4][5][6][7][8][9] The DEB theory adheres to stringent thermodynamic principles, is motivated by universally observed patterns, is non-species specific, and links different levels of biological organization (cells, organisms, and populations) as prescribed by the implications of energetics.[8][9][10][11] Models based on the DEB theory have been successfully applied to over 1000 species with real-life applications ranging from conservation, aquaculture, general ecology, and ecotoxicology[12][13] (see also the Add-my-pet collection). The theory is contributing to the theoretical underpinning of the emerging field of metabolic ecology.
The explicitness of the assumptions and the resulting predictions enable testing against a wide variety of experimental results at the various levels of biological organization.[1][2][8][14][15] The theory explains many general observations, such as the body size scaling relationships of certain physiological traits, and provides a theoretical underpinning to the widely used method of indirect calorimetry.[4][7][8][16] Several popular empirical models are special cases of the DEB model, or very close numerical approximations.[1][16][17]
Theoretical background
The theory presents simple mechanistic rules that describe the uptake and allocation of energy (and nutrients) and the consequences for physiological organization throughout an organism's life cycle, including the relationships of energetics with aging and effects of toxicants.[1][2][4][6][8] Assumptions of the DEB theory are delineated in an explicit way, the approach clearly distinguishes mechanisms associated with intra‐ and interspecific variation in metabolic rates, and equations for energy flows are mathematically derived following the principles of physics and simplicity.[1][2][18][19]
organizational uncoupling of metabolic modules (assimilation, dissipation, growth)
strong and weak homeostasis (composition of compartments is constant; composition of the organism is constant when the food is constant)
substrate(s) from the environment is/are first converted to reserve(s) before being used for further metabolism
The theory specifies that an organism is made up two main compartments: (energy) reserve and structure. Assimilation of energy is proportional to surface area of the structure, and maintenance is proportional to its volume. Reserve does not require maintenance. Energy mobilization will depend on the relative amount of the energy reserve, and on the interface between reserve and structure. Once mobilized, the energy is split into two branches:
a fixed proportion (termed kappa, κ) is allocated to growth (increase of structural mass) and maintenance of structure, while
the remaining proportion (1- κ) is allocated to processes of maturation (increase in complexity, installation of regulation systems, preparation for reproduction) and maintaining the level of attained maturity (including, e.g., maintenance of defense systems).
The κ-rule therefore states that the processes of growth and maturation do not directly compete. Maintenance needs to be paid before allocating energy to other processes.[4][8]
In the context of energy acquisition and allocation, the theory recognizes three main developmental stages: embryo, which does not feed or reproduce, juvenile, which feeds but does not reproduce, and adult, which both feeds and is allocating energy to reproduction. Transitions between these life stages occur at events specified as birth and puberty, which are reached when energy invested into maturation (tracked as 'level of maturity') reaches a certain threshold. Maturity does not increase in the adult stage, and maturity maintenance is proportional to maturity.[1][2][4][8]
Biochemical composition of reserve and structure is considered to be that of generalised compounds, and is constant (the assumption of strong homeostasis) but not necessarily identical. Biochemical transformation from food to reserve (assimilation), and from reserve to structure (growth) include overhead costs. These overheads, together with processes of somatic and maturity maintenance and reproduction overheads (inefficiencies in transformation from reserve to reproductive material), all contribute to the consumption of oxygen and production of carbon dioxide, i.e. metabolism.[1][4][6][8]
DEB models
All dynamic energy budget models follow the energy budget of an individual organism throughout its life cycle; by contrast,"static" energy budget models describe a specific life stage or size of an organism.[14][20] The main advantage of the DEB-theory based model over most other models is its description of energy assimilation and utilization (reserve dynamics) simultaneously with decoupled processes of growth, development/ maturation, and maintenance.[11][21][22] Under constant environmental conditions (constant food and temperature) the standard DEB model can be simplified to the von Bertalanffy (or better, Putter's [23]) growth model, but its mechanistic process-based setup enables incorporating fluctuating environmental conditions, as well as studying reproduction and maturation in parallel to growth.[23]
DEB theory specifies reserves as separate from structure: these are the two state variables that contribute to physical volume, and (in combination with reproduction buffer of adults) fully define the size of an individual. Maturity (also a state variable of the model) tracks how much energy has been invested into maturation, and therefore determines the life stage of the organism relative to maturity levels at which life stage transitions (birth and puberty) occur. Dynamics of the state variables are given by ordinary differential equations which include the major processes of energy uptake and use: assimilation, mobilization, maintenance, growth, maturation, and reproduction.[1][2][4][5][7][8]
Food is transformed into reserve, which fuels all other metabolic processes. The feeding rate is proportional to the surface area; food handling time and the transformation efficiency from food to reserve are independent of food density.
A fixed fraction (kappa) of mobilized reserve is allocated to somatic maintenance plus growth (soma), the rest on maturity maintenance plus maturation or reproduction. Maintenance has priority over other processes. Somatic maintenance is proportional to structural body volume, and maturity maintenance to maturity. Heating costs for endotherms and osmotic work (for fresh water organisms) are somatic maintenance costs that are proportional to surface area.
Stage transitions occur if the cumulated investment into maturation exceeds threshold values. Life stages typically are: embryo, juvenile, and adult. Reserve that is allocated to reproduction is first accumulated in a buffer. The rules for converting the buffer to gametes are species-specific (e.g. spawning can be once per season).
Parameters of the model are individual specific, but similarities between individuals of the same species yield species-specific parameter estimations.[8][14][24] DEB parameters are estimated from several types of data simultaneously.[14][24][25][26] Routines for data entry and parameter estimation are available as free software package DEBtoolArchived 2017-03-18 at the Wayback Machine implemented in the MATLAB environment, with the process of model construction explained in a Wiki-style manualArchived 2020-08-05 at the Wayback Machine. Estimated parameters are collected in the online library called the Add-my-pet project.
The standard DEB model
The standard model quantifies the metabolism of an isomorph (organism that does not change in shape during ontogeny) that feeds on one type of food with a constant composition (therefore the weak homeostasis applies, i.e. the chemical composition of the body is constant). The state variables of the individual are 1 reserve, 1 structure, maturity, and (in the adult stage) the reproduction buffer. Parameter values are constant throughout life. The reserve density at birth equals that of the mother at egg formation. Foetuses develop similarly, but receive unrestricted amount of reserve from the mother during development.
Extensions of the standard model
DEB theory has been extended into many directions, such as
effects of changes in shape during growth (e.g. V1-morphs and V0-morphs)
non-standard embryo->juvenile->adult transitions, for example in holometabolic insects [27]
inclusion of more types of food (substrate), which requires synthesizing units to model
inclusion of more reserves (which is necessary for organisms that do not feed on other organisms) and more structures (which is necessary to deal with plants), or a simplified version of the model (DEBkiss) applicable in ecotoxicology [28][29]
the formation and excretion of metabolic products (which is a basis for syntrophic relationships, and useful in biotechnology)
the production of free radicals (linked to size and nutritional status) and their effect on survival (aging)
processes of adaptation (gene expression) to the availability of substrates (important in biodegradation)
A list and description of most common typified models can be found hereArchived 2019-10-25 at the Wayback Machine.
Criticism
The main criticism is directed to the formal presentation of the theory (heavy mathematical jargon), number of listed parameters, the symbol heavy notation, and the fact that modeled (state) variables and parameters are abstract quantities which cannot be directly measured, all making it less likely to reach its intended audience (ecologists) and be an "efficient" theory.[2][18][19][30]
However, more recent publications aim to present the DEB theory in an "easier to digest" content to "bridge the ecology-mathematics gap".[2][18][19][23] List of parameters is a direct result of list of processes which are of interest—if only growth under constant food and temperature is of interest, the standard DEB model can be simplified to the von Bertalanffy growth curve.[23] Adding more processes into focus (such as reproduction and/or maturation), and forcing the model with fluctuating (dynamic) environmental conditions, needless to say, will result in more parameters.[23]
The general methodology of estimation of DEB parameters from data is described in van der Meer 2006; Kooijman et al 2008 shows which particular compound parameters can be estimated from a few simple observations at a single food density and how an increasing number of parameters can be estimated if more quantities are observed at several food densities. A natural sequence exists in which parameters can be known in principle. In addition, routines for data entry and scripts for parameter estimation are available as a free and documented software package DEBtoolArchived 2017-03-18 at the Wayback Machine, aiming to provide a ready-to-use tool for users with less mathematical and programing background. Number of parameters, also pointed as relatively sparse for a bioenergetic model,[10][20] vary depending on the main application and, because the whole life cycle of an organism is defined, the overall number of parameters per data-set ratio is relatively low.[14][15][31] Linking the DEB (abstract) and measured properties is done by simple mathematical operations which include auxiliary parameters (also defined by the DEB theory and included in the DEBtoolArchived 2017-03-18 at the Wayback Machine routines), and include also switching between energy-time and mass-time contexts.[2][1][32][9]Add my pet (AmP) project explores parameter pattern values across taxa. The DEB notation is a result of combining the symbols from the main fields of science (biology, chemistry, physics, mathematics) used in the theory, while trying to keep the symbols consistent.[8] As the symbols themselves contain a fair bit of information [1][2][8] (see DEB notation document), they are kept in most of the DEB literature.
Compatibility (and applicability) of DEB theory/models with other approaches
Dynamic energy budget theory presents a quantitative framework of metabolic organization common to all life forms, which could help to understand evolution of metabolic organization since the origin of life.[5][8][10] As such, it has a common aim with the other widely used metabolic theory: the West-Brown-Enquist (WBE) metabolic theory of ecology, which prompted side-by-side analysis of the two approaches.[3][14][15][33] Though the two theories can be regarded as complementary to an extent,[11][34] they were built on different assumptions and have different scope of applicability.[3][11][14][15] In addition to a more general applicability, the DEB theory does not suffer from consistency issues pointed out for the WBE theory.[3][11][15]
Applications
Add my pet (AmP) project is a collection of DEB models for over 1000 species, and explores patterns in parameter values across taxa. Routines for parameter exploration are available in AmPtoolArchived 2018-04-09 at the Wayback Machine.
Models based on DEB theory can be linked to more traditional bioenergetic models without deviating from the underlying assumptions.[11][32] This allows comparison and testing of model performance .
A DEB-module (physiological model based on DEB theory) was successfully applied to reconstruct and predict physiological responses of individuals under environmental constraints [35][36][37]
A DEB-module is also featured in the eco-toxicological mechanistic models (DEBtox implementation) for modeling the sublethal effects of toxicants (e.g., change in reproduction or growth rate) [28][29][38][39][40]
Generality of the approach and applicability of the same mathematical framework to organisms of different species and life stages enables inter- and intra-species comparisons on the basis of parameter values,[3][21] and theoretical/empirical exploration of patterns in parameter values in the evolutionary context,[41] focusing for example on development,[42][43][22][44] energy utilization in a specific environment,[45][46][47] reproduction,[48] comparative energetics,[49][50] and toxicological sensitivity linked to metabolic rates.[51]
Studying patterns in body size scaling relationships: The assumptions of the model quantify all energy and mass fluxes in an organism (including heat, dioxygen, carbon dioxide, ammonia) while avoiding using the allometric relationships.[8][21][41] In addition, same parameters describe same processes across species: for example, heating costs of endotherms (proportional to surface area) are regarded separate to volume-linked metabolic costs of both ectotherms and endotherms, and cost of growth, even though they all contribute to metabolism of the organism.[8] Rules for the co-variation of parameter values across species are implied by model assumptions, and the parameter values can be directly compared without dimensional inconsistencies which might be linked to allometric parameters.[14][21] Any eco-physiological quantity that can be written as function of DEB parameters which co-vary with size can, for this reason, also be written as function of the maximum body size.[8]
DEB theory provides constraints on the metabolic organisation of sub-cellular processes.[4][10] Together with rules for interaction between individuals (competition, syntrophy, prey-predator relationships), it also provides a basis to understand population and ecosystem dynamics.[10][52]
Many more examples of applications have been published in scientific literature.[12]
^ abcM., Kooijman, S. A. L. (1993). Dynamic energy budgets in biological systems : theory and applications in ecotoxicology. Cambridge: Cambridge University Press. ISBN978-0521452236. OCLC29596070.{{cite book}}: CS1 maint: multiple names: authors list (link)
^ abcM., Kooijman, S. A. L. (2000). Dynamic energy and mass budgets in biological systems. Kooijman, S. A. L. M. (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN978-0521786089. OCLC42912283.{{cite book}}: CS1 maint: multiple names: authors list (link)
^ abcdZonneveld, C; Kooijman, S (1993). "Comparative kinetics of embryo development". Bulletin of Mathematical Biology. 55 (3): 609–635. doi:10.1007/BF02460653. PMID8364420.
^ abMueller, Casey A.; Augustine, Starrlight; Kooijman, Sebastiaan A.L.M.; Kearney, Michael R.; Seymour, Roger S. (2012). "The trade-off between maturation and growth during accelerated development in frogs". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 163 (1): 95–102. doi:10.1016/j.cbpa.2012.05.190. PMID22613786.
^Lika, Konstadia; Kearney, Michael R.; Freitas, Vânia; Veer, Henk W. van der; Meer, Jaap van der; Wijsman, Johannes W.M.; Pecquerie, Laure; Kooijman, Sebastiaan A.L.M. (2011). "The "covariation method" for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach". Journal of Sea Research. 66 (4): 270–277. Bibcode:2011JSR....66..270L. doi:10.1016/j.seares.2011.07.010.
^Kooijman, S. A. L. M.; Sousa, T.; Pecquerie, L.; Meer, J. Van Der; Jager, T. (2008-11-01). "From food-dependent statistics to metabolic parameters, a practical guide to the use of dynamic energy budget theory". Biological Reviews. 83 (4): 533–552. doi:10.1111/j.1469-185x.2008.00053.x. ISSN1469-185X. PMID19016672. S2CID406961.
^Llandres, Ana L.; Marques, Gonçalo M.; Maino, James L.; Kooijman, S. A. L. M.; Kearney, Michael R.; Casas, Jérôme (2015-08-01). "A dynamic energy budget for the whole life-cycle of holometabolous insects". Ecological Monographs. 85 (3): 353–371. doi:10.1890/14-0976.1. ISSN1557-7015.
^ abJager, Tjalling; Zimmer, Elke I. (2012). "Simplified Dynamic Energy Budget model for analysing ecotoxicity data". Ecological Modelling. 225: 74–81. doi:10.1016/j.ecolmodel.2011.11.012.
^Marquet, Pablo A.; Allen, Andrew P.; Brown, James H.; Dunne, Jennifer A.; Enquist, Brian J.; Gillooly, James F.; Gowaty, Patricia A.; Green, Jessica L.; Harte, John (2014-08-01). "On Theory in Ecology". BioScience. 64 (8): 701–710. doi:10.1093/biosci/biu098. ISSN0006-3568.
^Brown, James H.; Gillooly, James F.; Allen, Andrew P.; Savage, Van M.; West, Geoffrey B. (2004-07-01). "Toward a Metabolic Theory of Ecology". Ecology. 85 (7): 1771–1789. doi:10.1890/03-9000. ISSN1939-9170.
^Kearney, Michael; Porter, Warren (2009-04-01). "Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges". Ecology Letters. 12 (4): 334–350. doi:10.1111/j.1461-0248.2008.01277.x. ISSN1461-0248. PMID19292794.
^ abLika, Konstadia; Kearney, Michael R.; Kooijman, Sebastiaan A.L.M. (2011). "The "covariation method" for estimating the parameters of the standard Dynamic Energy Budget model II: Properties and preliminary patterns". Journal of Sea Research. 66 (4): 278–288. Bibcode:2011JSR....66..278L. doi:10.1016/j.seares.2011.09.004.
^Kooijman, S.A.L.M.; Pecquerie, L.; Augustine, S.; Jusup, M. (2011). "Scenarios for acceleration in fish development and the role of metamorphosis". Journal of Sea Research. 66 (4): 419–423. Bibcode:2011JSR....66..419K. doi:10.1016/j.seares.2011.04.016.
^Kooijman, S. a. L. M. (1986-02-01). "What the hen can tell about her eggs: egg development on the basis of energy budgets". Journal of Mathematical Biology. 23 (2): 163–185. doi:10.1007/BF00276955. ISSN0303-6812. PMID3958633. S2CID20241067.
^Kooijman, S. A. L. M. (2013-03-01). "Waste to hurry: dynamic energy budgets explain the need of wasting to fully exploit blooming resources". Oikos. 122 (3): 348–357. doi:10.1111/j.1600-0706.2012.00098.x. ISSN1600-0706.
^Kooijman, Sebastiaan A.L.M.; Lika, Konstadia (2014). "Comparative energetics of the 5 fish classes on the basis of dynamic energy budgets". Journal of Sea Research. 94: 19–28. Bibcode:2014JSR....94...19K. doi:10.1016/j.seares.2014.01.015.
DEBwikiArchived 2019-10-22 at the Wayback Machine - main page with links to events, software tools, collections, research groups etc. linked to DEB theory
Add my pet (AmP) project portal - collection of species for which DEB model parameter values were estimated and implications, inter-species parameter patterns
Zotero DEB library - collection of scientific literature on the DEB theory
Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Foto Nun Alex atau K.H. Hassan Ahsan Malik Pengasuh Pesantren Zainul Hasan Genggong. Gus H. Hassan Ahsan Malik, S.Sy., M.Pd., atau biasa dikenal Nun Alex atau Gus Alex Genggong (lahir di Probolinggo, Jawa Timur, 06 November 1983) adalah seorang tokoh intelektual Muslim Indonesia. Ia dianggap sebagai pelopor Ide pesantr...
Clearwater Ciudad Clearwater desde lo alto. ClearwaterUbicación en el condado de Pinellas en Florida Ubicación de Florida en EE. UU.Coordenadas 27°58′25″N 82°45′51″O / 27.973611111111, -82.764166666667Entidad Ciudad • País Estados Unidos • Estado Florida • Condado PinellasSuperficie • Total 101.63 km² • Tierra 66.2 km² • Agua (34.86%) 35.43 km²Altitud • Media 9 m s. n. m.Población&...
La Torre de Fontaubella Gemeente in Spanje Situering Autonome regio Catalonië Provincie Tarragona Coördinaten 41° 8′ NB, 0° 52′ OL Algemeen Oppervlakte 7,15 km² Inwoners (1 januari 2016) 134 (19 inw./km²) Provincie- engemeentecode 43.151 https://torredefontaubella.altanet.org/ Detailkaart Locatie in Catalonië Foto's La Torre de Fontaubella Portaal Spanje La Torre de Fontaubella is een gemeente in de Spaanse provincie Tarragona in de regio Cata...
Kota Tabuk component city (en) Tempat Negara berdaulatFilipinaRegion of the Philippines (en) Cordillera Administrative Region (en) Provinsi di FilipinaKalinga Ibu kota dariKalinga NegaraFilipina PendudukTotal121.033 (2020 )Tempat tinggal25.731 (2020 )Bahasa resmiKalinga (en) , Ga'dang (en) , Bahasa Iloko dan Tagalog GeografiLuas wilayah700,25 km² [convert: unit tak dikenal]Ketinggian293 m Berbatasan denganPinukpuk Tanudan Paracelis SejarahPembuatan16 Juni 1950 Informasi tamb...
Kuskus Banggai Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Diprotodontia Famili: Phalangeridae Genus: Strigocuscus Spesies: S. pelengensis Nama binomial Strigocuscus pelengensis(Tate, 1945) Banggai Cuscus range Kuskus Banggai (Strigocuscus pelengensis) adalah spesies marsupial dari keluarga Phalangeridae. Kuskus Banggai adalah hewan endemik dari Indonesia. Kuskus Banggai adalah termasuk hewan possu...
The CrowdPoster rilis teatrikalSutradara King Vidor Produser Irving Thalberg Ditulis olehKing VidorJohn V.A. WeaverHarry Behn (tidak disebutkan)PemeranJames MurrayEleanor BoardmanBert RoachSinematograferHenry SharpPenyuntingHugh WynnDistributorMGMTanggal rilis 18 Februari 1928 (1928-02-18) Durasi104 menitNegara Amerika Serikat BahasaFilm bisu dengan antar judul Inggris The Crowd adalah sebuah film bisu Amerika 1928 yang disutradarai oleh King Vidor dan dibintangi oleh Eleanor Boardman da...
Arch bridge Wearmouth BridgeWearmouth Bridge in the foreground and the Monkwearmouth Railway Bridge in the background.Coordinates54°54′36″N 1°22′58″W / 54.91°N 1.3828°W / 54.91; -1.3828Carries A183 A1018 Motor vehicles 1 CyclesPedestriansHeritage statusGrade II listed building CharacteristicsDesignThrough arch bridgeLongest span114 m (374 ft) No. of lanes53 northbound2 southboundHistoryConstruction s...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Love Can Build a Bridge album – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this template message) 1990 studio album by the JuddsLove Can Build a BridgeStudio album by the JuddsReleasedSeptember 11, 1990Reco...
ГородПетах-Тикваивр. פֶּתַח תִּקְוָה Герб 32°05′00″ с. ш. 34°53′00″ в. д.HGЯO Страна Израиль Округ Центральный Мэр Рами Гринберг[1] История и география Основан 1878 Город с 1937 Площадь 39 км² Высота над уровнем моря 50[2] м Часовой пояс UTC+2:00, летом UTC+3:00 Насе...
University of Nottingham MalaysiaUniversiti Nottingham Malaysia (Malay)Former namesUniversity of Nottingham Malaysia Campus (UNMC)MottoLatin: Sapientia urbs conditur[1]Motto in EnglishA City is Built on Wisdom[1]TypePrivateEstablished2000ChairmanAdmiral Tan Sri Dato' Setia Mohd Anwar Bin Hj Mohd Nor (Retired)ChancellorBaroness Young of Hornsey OBEVice-ChancellorProfessor Shearer WestProvostProfessor Sarah MetcalfeStudents5,000+[2]Undergraduates4,016[2]...
Slovakian Paralympic shooter Veronika VadovičováVadovičová in 2016Personal informationNationalitySlovakBorn (1983-02-09) February 9, 1983 (age 40)Trnava, CzechoslovakiaAlma materUniverzita Palackého v Olomouci Vysoká škola zdravotníctva a sociálnej práce sv. Alžbety v Bratislave Univerzita Komenského v BratislaveHeight148 cm (4 ft 10 in)SportSportParalympic shootingDisability classSH1EventR3, R6, R8ClubŠK Altius BratislavaCoached by Milan GoleňaAchi...
Douglas BTD Destroyer adalah sebuah pesawat pembom torpedo milik Amerika dam dikembangkan untuk Angkatan Laut Amerika Serikat selama Perang Dunia II. Pada tanggal 20 Juni 1941, Angkatan Laut Amerika Serikat menempatkan pesanan kepada Douglas Aircraft Company untuk dua prototipe dari dua pesawat pembom tukik untuk menggantikan Douglas SBD Dauntless dan Curtiss SB2C Helldiver. Maka, ditunjuklah XSB2D-1. Pesawat yang dihasilkan, dirancang oleh tim yang dipimpin oleh Ed Heinemann, adalah monopla...
Putri Charlotte of WalesPutri Charlotte tahun 2022Kelahiran2 Mei 2015 (umur 8)St Mary's Hospital, London, Britania RayaWangsaWangsa WindsorNama lengkapCharlotte Elizabeth DianaAyahWilliam, Pangeran WalesIbuCatherine MiddletonAgamaGereja Inggris Keluarga Kerajaan Britania Rayadan Wilayah Persemakmuran lainnya Baginda Sang RajaBaginda Sang Permaisuri Paduka Sang Pangeran WalesPaduka Sang Putri Wales Paduka Pangeran George dari Wales Paduka Putri Charlotte dari Wales Paduka Pangeran Louis d...
Type of administrative entity in Ukraine City of district significanceLocations of cities of district significance in UkraineCategoryThird-level division of UkraineFound inRaions (districts)Created byVerkhovna Rada law No.280/97-врAdopted on 4 May 1997[1]Number276 (as of 2015)Additional statusCity Council (Municipality)Populationsup to 50,000[nb 1]Areasup to approx. 65 km2 (25 sq mi)[nb 2] Part of a series on theSubdivisions of Ukraine F...
Víctor García de la Concha Director del Instituto Cervantes 27 de enero de 2012-27 de enero de 2017Presidente Mariano RajoyPredecesor Carmen CaffarelSucesor Juan Manuel Bonet Director de la Real Academia Española 1998-2010Predecesor Fernando Lázaro CarreterSucesor José Manuel Blecua Perdices Información personalNacimiento 2 de enero de 1934 (90 años) Villaviciosa, EspañaNacionalidad EspañolaReligión Iglesia católica EducaciónEducación doctor Educado en Universidad de OviedoI...
Cet article est une ébauche concernant l’athlétisme et Boston. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Marathon de Boston 2012 Wesley Korir, vainqueur du Marathon de Boston 2012, célébrant sa victoire.Généralités Sport Athlétisme Organisateur(s) BAA Édition 116e Lieu(x) Boston Massachusetts États-Unis Date 16 avril 2012 Participants Environ 27 000 Disciplines Marathon Palmarès Vainqueur...