Syntrophy

In biology, syntrophy,[1][2][3][4] syntrophism,[1][5][6] or cross-feeding[1] (from Greek syn meaning together, trophe meaning nourishment) is the cooperative interaction between at least two microbial species to degrade a single substrate.[2][3][4][7] This type of biological interaction typically involves the transfer of one or more metabolic intermediates between two or more metabolically diverse microbial species living in close proximity to each other.[3][5] Thus, syntrophy can be considered an obligatory interdependency and a mutualistic metabolism between different microbial species, wherein the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other(s).[8][9]

Microbial syntrophy

Syntrophy is often used synonymously for mutualistic symbiosis especially between at least two different bacterial species. Syntrophy differs from symbiosis in a way that syntrophic relationship is primarily based on closely linked metabolic interactions to maintain thermodynamically favorable lifestyle in a given environment.[10][11][12] Syntrophy plays an important role in a large number of microbial processes especially in oxygen limited environments, methanogenic environments and anaerobic systems.[13][14] In anoxic or methanogenic environments such as wetlands, swamps, paddy fields, landfills, digestive tract of ruminants, and anerobic digesters syntrophy is employed to overcome the energy constraints as the reactions in these environments proceed close to thermodynamic equilibrium.[9][14][15]

Mechanism of microbial syntrophy

The main mechanism of syntrophy is removing the metabolic end products of one species so as to create an energetically favorable environment for another species.[15] This obligate metabolic cooperation is required to facilitate the degradation of complex organic substrates under anaerobic conditions. Complex organic compounds such as ethanol, propionate, butyrate, and lactate cannot be directly used as substrates for methanogenesis by methanogens.[9] On the other hand, fermentation of these organic compounds cannot occur in fermenting microorganisms unless the hydrogen concentration is reduced to a low level by the methanogens. The key mechanism that ensures the success of syntrophy is interspecies electron transfer.[16] The interspecies electron transfer can be carried out via three ways: interspecies hydrogen transfer, interspecies formate transfer and interspecies direct electron transfer.[16][17] Reverse electron transport is prominent in syntrophic metabolism.[13]

The metabolic reactions and the energy involved for syntrophic degradation with H2 consumption:[18]

A classical syntrophic relationship can be illustrated by the activity of ‘Methanobacillus omelianskii’. It was isolated several times from anaerobic sediments and sewage sludge and was regarded as a pure culture of an anaerobe converting ethanol to acetate and methane. In fact, however, the culture turned out to consist of a methanogenic archaeon "organism M.o.H" and a Gram-negative Bacterium "Organism S" which involves the oxidization of ethanol into acetate and methane mediated by interspecies hydrogen transfer. Individuals of organism S are observed as obligate anaerobic bacteria that use ethanol as an electron donor, whereas M.o.H are methanogens that oxidize hydrogen gas to produce methane.[18][19][20]

Organism S: 2 Ethanol + 2 H2O → 2 Acetate + 2 H+ + 4 H2 (ΔG°' = +9.6 kJ per reaction)

Strain M.o.H.: 4 H2 + CO2 → Methane + 2 H2O (ΔG°' = -131 kJ per reaction)

Co-culture:2 Ethanol + CO2 → 2 Acetate + 2 H+ + Methane (ΔG°' = -113 kJ per reaction)

The oxidization of ethanol by organism S is made possible thanks to the methanogen M.o.H, which consumes the hydrogen produced by organism S, by turning the positive Gibbs free energy into negative Gibbs free energy. This situation favors growth of organism S and also provides energy for methanogens by consuming hydrogen. Down the line, acetate accumulation is also prevented by similar syntrophic relationship.[18] Syntrophic degradation of substrates like butyrate and benzoate can also happen without hydrogen consumption.[15]

An example of propionate and butyrate degradation with interspecies formate transfer carried out by the mutual system of Syntrophomonas wolfei and Methanobacterium formicicum:[16]

Propionate+2H2O+2CO2 → Acetate- +3Formate- +3H+ (ΔG°'=+65.3 kJ/mol)

Butyrate+2H2O+2CO2 → 2Acetate- +3Formate- +3H+ ΔG°'=+38.5 kJ/mol)

Direct interspecies electron transfer (DIET) which involves electron transfer without any electron carrier such as H2 or formate was reported in the co-culture system of Geobacter mettalireducens and Methanosaeto or Methanosarcina[16][21]

Examples

In ruminants

The defining feature of ruminants, such as cows and goats, is a stomach called a rumen.[22] The rumen contains billions of microbes, many of which are syntrophic.[14][23] Some anaerobic fermenting microbes in the rumen (and other gastrointestinal tracts) are capable of degrading organic matter to short chain fatty acids, and hydrogen.[14][9] The accumulating hydrogen inhibits the microbe's ability to continue degrading organic matter, but the presence of syntrophic hydrogen-consuming microbes allows continued growth by metabolizing the waste products.[23] In addition, fermentative bacteria gain maximum energy yield when protons are used as electron acceptor with concurrent H2 production. Hydrogen-consuming organisms include methanogens, sulfate-reducers, acetogens, and others.[24]

Some fermentation products, such as fatty acids longer than two carbon atoms, alcohols longer than one carbon atom, and branched chain and aromatic fatty acids, cannot directly be used in methanogenesis.[25] In acetogenesis processes, these products are oxidized to acetate and H2 by obligated proton reducing bacteria in syntrophic relationship with methanogenic archaea as low H2 partial pressure is essential for acetogenic reactions to be thermodynamically favorable (ΔG < 0).[26]

Biodegradation of pollutants

Syntrophic microbial food webs play an integral role in bioremediation especially in environments contaminated with crude oil and petrol. Environmental contamination with oil is of high ecological importance and can be effectively mediated through syntrophic degradation by complete mineralization of alkane, aliphatic and hydrocarbon chains.[27][28] The hydrocarbons of the oil are broken down after activation by fumarate, a chemical compound that is regenerated by other microorganisms.[29] Without regeneration, the microbes degrading the oil would eventually run out of fumarate and the process would cease. This breakdown is crucial in the processes of bioremediation and global carbon cycling.[29]

Syntrophic microbial communities are key players in the breakdown of aromatic compounds, which are common pollutants.[28] The degradation of aromatic benzoate to methane produces intermediate compounds such as formate, acetate, CO2 and H2.[28] The buildup of these products makes benzoate degradation thermodynamically unfavorable. These intermediates can be metabolized syntrophically by methanogens and makes the degradation process thermodynamically favorable[28]

Degradation of amino acids

Studies have shown that bacterial degradation of amino acids can be significantly enhanced through the process of syntrophy.[30] Microbes growing poorly on amino acid substrates alanine, aspartate, serine, leucine, valine, and glycine can have their rate of growth dramatically increased by syntrophic H2 scavengers. These scavengers, like Methanospirillum and Acetobacterium, metabolize the H2 waste produced during amino acid breakdown, preventing a toxic build-up.[30] Another way to improve amino acid breakdown is through interspecies electron transfer mediated by formate. Species like Desulfovibrio employ this method.[30] Amino acid fermenting anaerobes such as Clostridium species, Peptostreptococcus asacchaarolyticus, Acidaminococcus fermentans were known to breakdown amino acids like glutamate with the help of hydrogen scavenging methanogenic partners without going through the usual Stickland fermentation pathway[14][30]

Anaerobic digestion

Effective syntrophic cooperation between propionate oxidizing bacteria, acetate oxidizing bacteria and H2/acetate consuming methanogens is necessary to successfully carryout anaerobic digestion to produce biomethane[4][18]

Examples of syntrophic organisms

References

  1. ^ a b c Gentry, Terry J.; Pepper, Ian L.; Pierson, Leland S. (2015-01-01), Pepper, Ian L.; Gerba, Charles P.; Gentry, Terry J. (eds.), "Chapter 19 - Microbial Diversity and Interactions in Natural Ecosystems", Environmental Microbiology (Third Edition), San Diego: Academic Press, pp. 441–460, doi:10.1016/b978-0-12-394626-3.00019-3, ISBN 978-0-12-394626-3, retrieved 2023-12-27
  2. ^ a b Marietou, Angeliki (2021-01-01), Gadd, Geoffrey Michael; Sariaslani, Sima (eds.), "Chapter Two - Sulfate reducing microorganisms in high temperature oil reservoirs", Advances in Applied Microbiology, 116, Academic Press: 99–131, doi:10.1016/bs.aambs.2021.03.004, PMID 34353505, retrieved 2023-12-27
  3. ^ a b c d e Schink B, Stams AJ (2013). "Syntrophism Among Prokaryotes". In Rosenberg E, DeLong EF, Lory S, Stackebrandt E (eds.). The Prokaryotes: Prokaryotic Communities and Ecophysiology. Berlin, Heidelberg: Springer. pp. 471–493. doi:10.1007/978-3-642-30123-0_59. ISBN 978-3-642-30123-0.
  4. ^ a b c Kamagata Y (2015-03-15). "Syntrophy in Anaerobic Digestion". Anaerobic Biotechnology. Imperial College Press. pp. 13–30. doi:10.1142/9781783267910_0002. ISBN 978-1-78326-790-3. Retrieved 2022-11-11.
  5. ^ a b "syntrophism | biology | Britannica". 2022-09-30. Archived from the original on 2022-09-30. Retrieved 2023-12-27.
  6. ^ "Syntrophism Definition & Meaning | Merriam-Webster Medical". 2022-08-19. Archived from the original on 2022-08-19. Retrieved 2023-12-27.
  7. ^ Hao L, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH, Albertsen M, et al. (April 2020). "Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics". The ISME Journal. 14 (4): 906–918. Bibcode:2020ISMEJ..14..906H. doi:10.1038/s41396-019-0571-0. PMC 7082340. PMID 31896784.
  8. ^ Dolfing J (January 2014). "Syntrophy in microbial fuel cells". The ISME Journal. 8 (1): 4–5. Bibcode:2014ISMEJ...8....4D. doi:10.1038/ismej.2013.198. PMC 3869025. PMID 24173460.
  9. ^ a b c d Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (May 2013). "Microbial syntrophy: interaction for the common good". FEMS Microbiology Reviews. 37 (3): 384–406. doi:10.1111/1574-6976.12019. PMID 23480449.
  10. ^ Sieber JR, McInerney MJ, Gunsalus RP (2012). "Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation". Annual Review of Microbiology. 66: 429–452. doi:10.1146/annurev-micro-090110-102844. PMID 22803797.
  11. ^ McInerney MJ, Sieber JR, Gunsalus RP (December 2009). "Syntrophy in anaerobic global carbon cycles". Current Opinion in Biotechnology. 20 (6): 623–632. doi:10.1016/j.copbio.2009.10.001. PMC 2790021. PMID 19897353.
  12. ^ McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, et al. (May 2007). "The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7600–7605. Bibcode:2007PNAS..104.7600M. doi:10.1073/pnas.0610456104. PMC 1863511. PMID 17442750.
  13. ^ a b McInerney MJ, Sieber JR, Gunsalus RP (December 2009). "Syntrophy in anaerobic global carbon cycles". Current Opinion in Biotechnology. Chemical biotechnology ● Pharmaceutical biotechnology. 20 (6): 623–632. doi:10.1016/j.copbio.2009.10.001. PMC 2790021. PMID 19897353.
  14. ^ a b c d e f Worm P, Müller N, Plugge CM, Stams AJ, Schink B (2010). "Syntrophy in methanogenic degradation.". (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs. Vol. 19. Berlin, Heidelberg: Springer. pp. 143–173. doi:10.1007/978-3-642-13615-3_9. ISBN 978-3-642-13614-6.
  15. ^ a b c d Jackson BE, McInerney MJ (January 2002). "Anaerobic microbial metabolism can proceed close to thermodynamic limits". Nature. 415 (6870): 454–456. Bibcode:2002Natur.415..454J. doi:10.1038/415454a. PMID 11807560. S2CID 9126984.
  16. ^ a b c d Zhang M, Zang L (2019). "A review of interspecies electron transfer in anaerobic digestion". IOP Conf. Ser: Earth Environ. 310 (4): 042026. Bibcode:2019E&ES..310d2026Z. doi:10.1088/1755-1315/310/4/042026. S2CID 202886264.
  17. ^ Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR (November 2012). "Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens". Applied and Environmental Microbiology. 78 (21): 7645–7651. Bibcode:2012ApEnM..78.7645R. doi:10.1128/AEM.01946-12. PMC 3485699. PMID 22923399.
  18. ^ a b c d Zhang Y, Li C, Yuan Z, Wang R, Angelidaki I, Zhu G (2023-01-15). "Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion". Chemical Engineering Journal. 452: 139137. Bibcode:2023ChEnJ.45239137Z. doi:10.1016/j.cej.2022.139137. ISSN 1385-8947. S2CID 252205776.
  19. ^ Wrede C, Dreier A, Kokoschka S, Hoppert M (2012). "Archaea in symbioses". Archaea. 2012: 596846. doi:10.1155/2012/596846. PMC 3544247. PMID 23326206.
  20. ^ Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (May 2013). "Microbial syntrophy: interaction for the common good". FEMS Microbiology Reviews. 37 (3): 384–406. doi:10.1111/1574-6976.12019. PMID 23480449.
  21. ^ Dubé CD, Guiot SR (2015). "Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review". Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology. Vol. 151. pp. 101–15. doi:10.1007/978-3-319-21993-6_4. ISBN 978-3-319-21992-9. PMID 26337845.
  22. ^ "What's a Rumen". AnimalSmart.org. Retrieved 2022-11-21.
  23. ^ a b Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, Gagic D (September 2016). "An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms". Environmental Microbiology. 18 (9): 3010–3021. doi:10.1111/1462-2920.13155. PMID 26643468.
  24. ^ Sapkota A (2022-07-12). "Syntrophism or Syntrophy Interaction- Definition, Examples". The Biology Notes. Retrieved 2022-11-21.
  25. ^ Kang D, Saha S, Kurade MB, Basak B, Ha G, Jeon B, et al. (July 2021). "Dual-stage pulse-feed operation enhanced methanation of lipidic waste during co-digestion using acclimatized consortia". Renewable and Sustainable Energy Reviews. 145: 111096. doi:10.1016/j.rser.2021.111096. ISSN 1364-0321. S2CID 234830362.
  26. ^ Stams AJ, de Bok FA, Plugge CM, van Eekert MH, Dolfing J, Schraa G (March 2006). "Exocellular electron transfer in anaerobic microbial communities". Environmental Microbiology. 8 (3): 371–382. Bibcode:2006EnvMi...8..371S. doi:10.1111/j.1462-2920.2006.00989.x. PMID 16478444.
  27. ^ Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT, et al. (January 2012). "The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation". Environmental Microbiology. 14 (1): 101–113. Bibcode:2012EnvMi..14..101C. doi:10.1111/j.1462-2920.2011.02516.x. PMID 21651686.
  28. ^ a b c d Ferry JG, Wolfe RS (February 1976). "Anaerobic degradation of benzoate to methane by a microbial consortium". Archives of Microbiology. 107 (1): 33–40. Bibcode:1976ArMic.107...33F. doi:10.1007/BF00427864. PMID 1252087. S2CID 31426072.
  29. ^ a b Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT, et al. (January 2012). "The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation". Environmental Microbiology. 14 (1): 101–113. Bibcode:2012EnvMi..14..101C. doi:10.1111/j.1462-2920.2011.02516.x. PMID 21651686.
  30. ^ a b c d Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F (July 1988). "Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate". Archives of Microbiology. 150 (3): 254–266. Bibcode:1988ArMic.150..254Z. doi:10.1007/BF00407789. ISSN 0302-8933. S2CID 34824309.
  31. ^ McInerney MJ, Bryant MP, Hespell RB, Costerton JW (April 1981). "Syntrophomonas wolfei gen. nov. sp. nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium". Applied and Environmental Microbiology. 41 (4): 1029–1039. Bibcode:1981ApEnM..41.1029M. doi:10.1128/aem.41.4.1029-1039.1981. PMC 243852. PMID 16345745.
  32. ^ Schöcke L, Schink B (September 1998). "Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium". European Journal of Biochemistry. 256 (3): 589–594. doi:10.1046/j.1432-1327.1998.2560589.x. PMID 9780235.

Read other articles:

Jembatan PandaruanJambatan PandaruanJambatan Persahabatan Brunei–MalaysiaKoordinat4°41′21″N 115°02′09″E / 4.689082°N 115.035797°E / 4.689082; 115.035797Koordinat: 4°41′21″N 115°02′09″E / 4.689082°N 115.035797°E / 4.689082; 115.035797Moda transportasiKendaraan bermotorMelintasiSungai PandaruanLokal Jalan Raya Pan BorneoNama resmiJembatan PandaruanJembatan Persahabatan Brunei–MalaysiaPengelolaBruneiDepartemen Pekerjaan ...

 

普門院 所在地 埼玉県さいたま市大宮区大成町2-402位置 北緯35度54分42.2秒 東経139度36分45.8秒 / 北緯35.911722度 東経139.612722度 / 35.911722; 139.612722座標: 北緯35度54分42.2秒 東経139度36分45.8秒 / 北緯35.911722度 東経139.612722度 / 35.911722; 139.612722山号 大成山[1]宗旨 曹洞宗[1]創建年 応永33年(1426年)[1]開基 月江正文文化財 タラヨウ法

 

6032 НобельВідкриттяВідкривач Карачкіна Людмила ГеоргіївнаМісце відкриття КрАОДата відкриття 4 серпня 1983ПозначенняНазвана на честь Альфред НобельТимчасові позначення 1983 PY 1979 KB1 1987 US7Категорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епох...

Chú Tuần lộc Rudolph Mũi đỏ là một con tuần lộc hư cấu với cái mũi màu đỏ và nằm trong chín con tuần lộc kéo xe của ông già Nô en để phát quà trong đêm Giáng sinh, nó được nhà văn Robert L. May tiểu thuyết hóa bắt nguồn từ một cuốn sách năm 1939 và sau đó được khắc họa trong nhiều câu truyện, bài hát và bộ phim về ông già Noel và cỗ xe trượt tuyết do các con tuần lộc kéo của ông ...

 

Philadelphia 76ersPhiladelphia 76ers musim 2023–24WilayahTimurDivisiAtlantikDibentuk1946SejarahSyracuse Nationals1946–1963Philadelphia 76ers1963–sekarang[1][2][3]ArenaWells Fargo CenterLetakPhiladelphia, PennsylvaniaWarna timBiru, merah, biru laut, perak, putih[4][5][6]         Sponsor utamaStubHub[7]CEOTad BrownPresidenDaryl MoreyManajer umumElton BrandPelatih kepalaNick NursePemilikHarris Blitzer Sports &...

 

PT Bank Muamalat Indonesia Tbk.JenisJasa keuangan/PublikDidirikan1991KantorpusatJakarta, IndonesiaTokohkunciIndra Falatehan (Presiden Direktur)PemilikBadan Pengelola Keuangan Haji (82,65%)[1]Situs webwww.bankmuamalat.co.id Bank Muamalat Indonesia, adalah bank umum pertama di Indonesia yang menerapkan prinsip Syariah Islam dalam menjalankan operasionalnya. Didirikan pada 1 November 1991, yang diprakarsai oleh Majelis Ulama Indonesia (MUI) dan Pemerintah Indonesia. Mulai beroperasi pada...

Ini adalah daftar lengkap pemegang pangkat Letnan Jenderal di Korps Marinir TNI Angkatan Laut, dulu dan sekarang. Pangkat Letnan Jenderal TNI (Marinir) (Jenderal bintang tiga) sampai saat ini merupakan pangkat tertinggi yang bisa didapat di oleh perwira tinggi Korps Marinir. Pangkat ini setara dengan Letnan Jenderal TNI di TNI Angkatan Darat dan Marsekal Madya TNI di TNI Angkatan Udara. Perwira tinggi bintang tiga TNI Angkatan Laut selain Korps Marinir, menggunakan pangkat Laksamana Madya TNI...

 

  此條目介紹的是一個橫跨美國與加拿大的區域。关于意義類似但僅指美國境內的區域,请见「美國西北部」。 此條目没有列出任何参考或来源。 (2019年5月16日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 太平洋西北地區Pacific Northwest「卡斯卡迪亞」 Cascadia 從上方順時針依序為 西雅圖天...

 

|Батько= |Посада= |Діти= |Дружина= |Мати= Микола Памфілович Вашетко Народився 6 (18) лютого 1880(1880-02-18)МиколаївкаПомер 6 вересня 1960(1960-09-06) (80 років)КиївПоховання Байкове кладовищеКраїна  СРСРДіяльність педагогAlma mater Університет Святого ВолодимираГалузь патофізіологіяВчене ...

Pengadilan sesi di Terengganu, Malaysia. Pengadilan Sesi adalah sebuah pengadilan hukum yang berdiri di beberapa negara Negara-Negara Persemakmuran. Feminisme Di kota-kota India, Pengadilan Sesi bertugas untuk mengumpulkan bahan-bahan yang berkaitan dengan kasus-kasus kejahatan. Dewan tersebut bertugas untuk menangani kasus-kasus terkait pembunuhan, pencurian, perampasan, pencopetan dan kasus-kasus semacamnya. Di Mumbai (Bombay), terdapat tiga pengadilan, yang paling utama berada di kawasan K...

 

1180 opening battle of the Genpei War First Battle of UjiPart of the Genpei WarThe Phoenix Hall of the Byōdō-in, in front of which the battle took placeDateJune 20, 1180[1]LocationUji, just outside Kyoto34°53′4″N 135°47′59″E / 34.88444°N 135.79972°E / 34.88444; 135.79972Result Taira victory; Minamoto commander and Prince Mochihito killedBelligerents  Minamoto clan  Taira clanCommanders and leaders Minamoto no Yorimasa  † Princ...

 

English pork sausage Cumberland sausage Cumberland sausage is a pork sausage that originated in the historic county of Cumberland, England, now part of Cumbria. It is traditionally very long, up to 50 centimetres (20 inches), and sold rolled in a flat, circular coil, but within western Cumbria, it is more often served in long, curved lengths.[citation needed] The meat is chopped, not ground or minced, giving the sausage a chunky texture. Seasonings are prepared from a variety of spice...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. US 5 dapat mengacu pada beberapa hal berikut: U.S. Route 5, jalan bebas hambatan di Amerika Serikat US5, band laki-laki Uang kertas lima dolar Amerika Serikat Halaman disambiguasi ini berisi daftar artikel dengan singkatan yang sama. Jika Anda mencapa...

 

American actress and film producer (born 1965) This biography of a living person needs additional citations for verification, as it includes attribution to IMDb. IMDb may not be a reliable source for biographical information. Please help by adding additional, reliable sources for verification. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful. (March 2020) (Learn how and when to remove this ...

 

List of equipment of the DPR/LPR This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may contain excessive or inappropriate references to self-published sources. Please help improve it by removing references to unreliable sources where they are used inappropriately. (August 2015) (Learn how and when to remove this template message) Some of this article's listed sources may not be...

رسم توضيحي لرجم زانية بالحجارة من كتاب ألف ليلة وليلة حد الرجم هو أحد أنواع العقوبات التي يتم تطبيقها على الرجل والمرأة المتزوجين في حال وقوع الزنا. يطبق هذا الحكم حاليا في إيران، باكستان، بعض ولايات نيجيريا،[1] وسجلت حالات طبقت فيها هذه العقوبة في المناطق التي تسيطر عل...

 

وثيقة حقوق الولايات المتحدة   تعديل مصدري - تعديل   وثيقة الحقوق في الولايات المتحدة وثيقة حقوق الولايات المتحدة (بالإنجليزية: United States Bill of Rights)‏ هي مصطلح يُقصد به التعديلات العشرة الأولى لدستور الولايات المتحدة. قُدّمت لتهدئة مخاوف مضادي الفيدرالية الذين عارضوا المص...

 

Moscoƿ —  Hēafodburg  — Moscoƿ on Russland Fana ScildFana Scild Land  RusslandGestaðelod unknown valueBrego Sergey SobyaninBradnes • gerim 2,562±1 km²Hiehþu 156 mLeodræden • buend 12,455,682 buendaTidgyrdel Moscow Time, UTC+03:00, Europe/MoscowSprecungrim 495, 499Wægnplatung 77, 97, 99, 177, 197, 199, 777, 799Webstede Webstede Moscoƿ Commons Þis cyþþubox hæfþ Wikidata wihtaS • M • Ā Moscoƿ (Russisc: Мос...

George Roy HillDate personaleNăscut20 decembrie 1921(1921-12-20)Minneapolis, MinnesotaDecedat27 decembrie 2002 (81 de ani)New York CityCauza decesuluicauze naturale (boala Parkinson) Căsătorit cuLouisa Horton Hill (1951–?; divorț; 4 copii)[1]Număr de copii4 Cetățenie Statele Unite ale Americii[2] OcupațieregizorLimbi vorbitelimba engleză[3][4] Alma materUniversitatea YaleBlake School[*][[Blake School (school in Minneapolis)|​]]HB Studio[*]...

 

Ez a szócikk a Queen-dalról szól. Hasonló címmel lásd még: We Will Rock You (egyértelműsítő lap). QueenWe Will Rock YouKislemez a(z) News of the World albumrólB-oldalWe Are the ChampionsMegjelent1977. október 7.Formátum7, 12, CD, kazettaFelvételek1977. július–szeptemberBasing Street Studios, Wessex Sound Studios, London, AngliaStílusRockNyelvangolHossz2:01KiadóEMI, ElektraSzerzőBrian MayProducerQueen, Mike Stone (társproducer)Queen-kronológiaQueen’s First EP(1977We Ar...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!