In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression). Conversely, it is a surface which can be made by transforming a plane (i.e. "folding", "bending", "rolling", "cutting" and/or "gluing"). In three dimensions all developable surfaces are ruled surfaces (but not vice versa). There are developable surfaces in four-dimensional space R 4 {\displaystyle \mathbb {R} ^{4}} which are not ruled.[1]
The envelope of a single parameter family of planes is called a developable surface.
The developable surfaces which can be realized in three-dimensional space include:
Formally, in mathematics, a developable surface is a surface with zero Gaussian curvature. One consequence of this is that all "developable" surfaces embedded in 3D-space are ruled surfaces (though hyperboloids are examples of ruled surfaces which are not developable). Because of this, many developable surfaces can be visualised as the surface formed by moving a straight line in space. For example, a cone is formed by keeping one end-point of a line fixed whilst moving the other end-point in a circle.
Developable surfaces have several practical applications.
Developable Mechanisms are mechanisms that conform to a developable surface and can exhibit motion (deploy) off the surface.[3][4]
Many cartographic projections involve projecting the Earth to a developable surface and then "unrolling" the surface into a region on the plane.
Since developable surfaces may be constructed by bending a flat sheet, they are also important in manufacturing objects from sheet metal, cardboard, and plywood. An industry which uses developed surfaces extensively is shipbuilding.[5]
Most smooth surfaces (and most surfaces in general) are not developable surfaces. Non-developable surfaces are variously referred to as having "double curvature", "doubly curved", "compound curvature", "non-zero Gaussian curvature", etc.
Some of the most often-used non-developable surfaces are:
Many gridshells and tensile structures and similar constructions gain strength by using (any) doubly curved form.
{{citation}}