This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.[1] It complements the article on Lie algebra in the area of abstract algebra.
An English version and review of this classification was published by Popovych et al.[2] in 2003.
Let g n {\displaystyle {\mathfrak {g}}_{n}} be n {\displaystyle n} -dimensional Lie algebra over the field of real numbers with generators e 1 , … , e n {\displaystyle e_{1},\dots ,e_{n}} , n ≤ 4 {\displaystyle n\leq 4} .[clarification needed] For each algebra g {\displaystyle {\mathfrak {g}}} we adduce only non-zero commutators between basis elements.
Algebra g 3.3 {\displaystyle {\mathfrak {g}}_{3.3}} can be considered as an extreme case of g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , when β → ∞ {\displaystyle \beta \rightarrow \infty } , forming contraction of Lie algebra.
Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , g 3.7 {\displaystyle {\mathfrak {g}}_{3.7}} are isomorphic to g 3.4 {\displaystyle {\mathfrak {g}}_{3.4}} and g 3.6 {\displaystyle {\mathfrak {g}}_{3.6}} , respectively.
Algebra g 4.3 {\displaystyle {\mathfrak {g}}_{4.3}} can be considered as an extreme case of g 4.2 {\displaystyle {\mathfrak {g}}_{4.2}} , when β → 0 {\displaystyle \beta \rightarrow 0} , forming contraction of Lie algebra.
Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 ⊕ g 1 {\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}} , g 3.7 ⊕ g 1 {\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}} , g 4.6 {\displaystyle {\mathfrak {g}}_{4.6}} , g 4.9 {\displaystyle {\mathfrak {g}}_{4.9}} , g 4.10 {\displaystyle {\mathfrak {g}}_{4.10}} are isomorphic to g 3.4 ⊕ g 1 {\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}} , g 3.6 ⊕ g 1 {\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}} , g 4.5 {\displaystyle {\mathfrak {g}}_{4.5}} , g 4.8 {\displaystyle {\mathfrak {g}}_{4.8}} , 2 g 2.1 {\displaystyle {2{\mathfrak {g}}}_{2.1}} , respectively.