Circular ensemble

In the theory of random matrices, the circular ensembles are measures on spaces of unitary matrices introduced by Freeman Dyson as modifications of the Gaussian matrix ensembles.[1] The three main examples are the circular orthogonal ensemble (COE) on symmetric unitary matrices, the circular unitary ensemble (CUE) on unitary matrices, and the circular symplectic ensemble (CSE) on self dual unitary quaternionic matrices.

Probability distributions

The distribution of the unitary circular ensemble CUE(n) is the Haar measure on the unitary group U(n). If U is a random element of CUE(n), then UTU is a random element of COE(n); if U is a random element of CUE(2n), then URU is a random element of CSE(n), where

Each element of a circular ensemble is a unitary matrix, so it has eigenvalues on the unit circle: with for k=1,2,... n, where the are also known as eigenangles or eigenphases. In the CSE each of these n eigenvalues appears twice. The distributions have densities with respect to the eigenangles, given by

on (symmetrized version), where β=1 for COE, β=2 for CUE, and β=4 for CSE. The normalisation constant Zn,β is given by

as can be verified via Selberg's integral formula, or Weyl's integral formula for compact Lie groups.

Generalizations

Generalizations of the circular ensemble restrict the matrix elements of U to real numbers [so that U is in the orthogonal group O(n)] or to real quaternion numbers [so that U is in the symplectic group Sp(2n). The Haar measure on the orthogonal group produces the circular real ensemble (CRE) and the Haar measure on the symplectic group produces the circular quaternion ensemble (CQE).

The eigenvalues of orthogonal matrices come in complex conjugate pairs and , possibly complemented by eigenvalues fixed at +1 or -1. For n=2m even and det U=1, there are no fixed eigenvalues and the phases θk have probability distribution[2]

with C an unspecified normalization constant. For n=2m+1 odd there is one fixed eigenvalue σ=det U equal to ±1. The phases have distribution

For n=2m+2 even and det U=-1 there is a pair of eigenvalues fixed at +1 and -1, while the phases have distribution

This is also the distribution of the eigenvalues of a matrix in Sp(2m).

These probability density functions are referred to as Jacobi distributions in the theory of random matrices, because correlation functions can be expressed in terms of Jacobi polynomials.

Calculations

Averages of products of matrix elements in the circular ensembles can be calculated using Weingarten functions. For large dimension of the matrix these calculations become impractical, and a numerical method is advantageous. There exist efficient algorithms to generate random matrices in the circular ensembles, for example by performing a QR decomposition on a Ginibre matrix.[3]

References

  1. ^ F.M. Dyson (1962). "The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics". Journal of Mathematical Physics. 3 (6): 1199. Bibcode:1962JMP.....3.1199D. doi:10.1063/1.1703863.
  2. ^ V.L. Girko (1985). "Distribution of eigenvalues and eigenvectors of orthogonal random matrices". Ukrainian Mathematical Journal. 37 (5): 457. doi:10.1007/bf01061167. S2CID 120597749.
  3. ^ F. Mezzadri (2007). "How to generate random matrices from the classical compact groups" (PDF). Notices of the AMS. 54: 592. arXiv:math-ph/0609050. Bibcode:2006math.ph...9050M.

Software Implementations

  • Mehta, Madan Lal (2004), Random matrices, Pure and Applied Mathematics (Amsterdam), vol. 142 (3rd ed.), Elsevier/Academic Press, Amsterdam, ISBN 978-0-12-088409-4, MR 2129906
  • Forrester, Peter J. (2010), Log-gases and random matrices, Princeton University Press, ISBN 978-0-691-12829-0

Read other articles:

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

 

Research vessel of the Indonesian Navy KRI Rigel (933) KRI Rigel on 29 April 2015 History Indonesia NameRigel NamesakeRigel Ordered1 August 2012 BuilderOCEA Shipbuilding, Les Sables-d'Olonne Laid downOctober 2013 Launched11 December 2014 Commissioned11 March 2015 Identification MMSI number: 525014077 Callsign: PLJJ Pennant number: 933 StatusActive General characteristics TypeRigel-class research vessel Displacement523 t (515 long tons) standard Length60.1 m (197 ft 2 in) D...

 

Fürst Karl Thomas Karl Thomas Fürst zu Löwenstein-Wertheim-Rochefort (* 7. März 1714 in Augsburg; † 6. Juni 1789 in Kleinheubach) war von 1735 bis 1789 der dritte Fürst aus dem Hause Löwenstein. Inhaltsverzeichnis 1 Dynastische Zuordnung 2 Bildung 3 Militärische Laufbahn 4 Herrschaft 5 Ehen und Familie 6 Nachfolger 7 Literatur 8 Einzelnachweise Dynastische Zuordnung Karl Thomas war der älteste Sohn des Fürsten Dominik Marquard zu Löwenstein-Wertheim-Rochefort (1690–1735) und von...

2013 video gameAvakin LifeDeveloper(s)Lockwood PublishingPublisher(s)Lockwood PublishingEngineUnityPlatform(s)Android, iOS, ChromeOSRelease10 December, 2013Genre(s)Life simulationMode(s)MultiplayerAvakin Life is a 3D life simulation computer and mobile video game developed and published by Lockwood Publishing, a company based in Nottingham, England. The game was first released on December 2013 for Android devices. As per 2022, it has more than 200 million registered users on iOS, Android and ...

 

Debstedter Weg WappenStraße in Bremerhaven Basisdaten Stadt Bremerhaven Stadtteil Leherheide Angelegt Ende 19. Jahrhundert Querstraßen Langener Landstraße, Breitenbachstraße, Mecklenburger Weg, Blumenauer Weg, Kastanienweg, Otto-Oellerich-Straße, Hermann-Schröder-Weg, Wacholderweg, Ahornweg, Hermann-Löns-Straße, Brillenmoor, Brunnenstraße, Fehrmoorweg, Drangstedter Weg, Plätternweg Nutzung Nutzergruppen Autos, Fahrräder und Fußgänger Straßen­gestaltung zweispurige Straße T...

 

American actor S. John LaunerS. John Launer in Perry Mason 1959BornSaul John Launer(1919-11-05)November 5, 1919Cleveland, Ohio, U.S.DiedNovember 8, 2006(2006-11-08) (aged 87)Burbank, California, U.S.Years active1955–1987SpouseEstelle LaunerChildren2, including Dale Launer Saul John Launer (November 5, 1919 – November 8, 2006), was an American television and film actor. Launer was born in Cleveland, Ohio, United States. Career Launer appeared in 89 films and television progra...

上原良司出生日本长野县池田町逝世日本沖繩縣嘉手納效命大日本帝国陆军服役年份1943年-1945年军衔陆军大尉 上原良司(1922年9月27日—1945年5月11日),是大日本帝国陆军的一名飞行员,在一次神风特攻中丧生。 他在1942年进入庆应义塾大学经济学学院学习,同年加入了位于长野县松本市陆军步兵第50聯隊。经过飞行员训练后,他于1945年加入大日本帝国陆军航空部队第56振...

 

Shopping centre in Gateshead, Tyne & Wear MetroCentreThe Green Quadrant of the MetroCentreLocationGateshead, Tyne and Wear, EnglandCoordinates54°57′25″N 1°40′08″W / 54.9569°N 1.6689°W / 54.9569; -1.6689Opening date14 October 1986; 37 years ago (1986-10-14)[1]Previous namesintu MetrocentreDeveloperCameron Hall DevelopmentsManagementAlexander Bickerton (CEO, Chairman, President)Lauren Blake (Business Partner)OwnerThe LA Fund (50%...

 

Dorfkirche Ragow aufgenommen beim Dorffest im September 2006 Die evangelische Paul-Gerhardt-Kirche ist eine Feldsteinkirche in Ragow, einem Ortsteil der Stadt Mittenwalde im Landkreis Dahme-Spreewald in Brandenburg. Sie ist nach dem evangelisch-lutherischen Theologen und Kirchenlieddichter Paul Gerhardt benannt, der während seiner Amtszeit als Propst an der Moritzkirche in Mittenwalde von 1651 bis 1657 vermutlich auch hier predigte.[1] Sie gehört zum Evangelischen Kirchenkreis Zosse...

Chicago L station Not to be confused with the Irving Park station on the Brown Line. You can help expand this article with text translated from the corresponding article in French. (April 2013) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accura...

 

Эта статья — о городе штата Техас. Другие значения термина «Бракетвилл» см. на соответствующей странице. ГородБракетвиллангл. Brackettville 29°19′06″ с. ш. 100°24′38″ з. д.HGЯO Страна  США Штат Техас Округ Кинни История и география Основан 1852 Площадь 8,2 км² Высота...

 

As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete permaneça verificável. (Janeiro de 2019) Eclipse Lunar Parcial5 de julho de 2001 A Lua cruzando a extremidade sul da sombra terrestre, de oeste para leste (da direita para a esquerda), com a metade norte do disco lunar escurecida. Gamma -0,7287 Saros (e membro) 139 (21 de 81) Sequência de eclipses lunares Anterior 9 de janeiro de 2001 Próximo 30 ...

The following is a chronological list of buildings designed by late-19th- and early-20th-century catalog architect, George Franklin Barber (1854–1915). Barber is best known for his houses, but also designed churches, barns, and storefronts. Key CS1 – Design found in Barber's The Cottage Souvenir (c. 1887–1888) CS2 — Design found in Barber's The Cottage Souvenir No. 2 (1891) CS3 — Design found in Barber's The Cottage Souvenir Revised and Enlarged (1892) AH —...

 

Social shopping app Depop LimitedType of businessSubsidiaryAvailable inEnglish, ItalianFounded2011; 12 years ago (2011) in Roncade, ItalyHeadquartersLondon, United KingdomNo. of locationsLondonManchesterMilanLos AngelesNew York CityArea servedWorldwideFounder(s)Simon BeckermanCEOKruti Patel GoyalIndustryOnline shoppingEmployees400 (2021)[1]ParentEtsyURLdepop.comUsers 30 million (2021)[2] Depop is a social e-commerce company based in London, wit...

 

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (December 2022) Politics of Russia Law Constitution Russian Criminal Code Tax Code Mental Health Law PresidencyPresidentVladimir Putin (list) Presidential Administration Security Council State Council ExecutivePrime MinisterMikhail Mishustin (list) Government Cabinet (56th) LegislatureFederal Assembly Federation Council Members Chairwoman: Valentina Matviyenko State Duma ...

Indian plant pathologist Toppur Seethapathy SadasivanBorn(1913-05-22)22 May 1913Saidapet, Madras Presidency, British IndiaDied18 August 2001(2001-08-18) (aged 88)Mylapore, Chennai, Tamil Nadu, IndiaOccupationPlant pathologistKnown forStudies in mycology and plant pathologyAwardsPadma BhushanShanti Swarup Bhatnagar PrizeIBS Birbal Sahni MedalBirbal Sahni Institute of Palaeobotany Jubilee MedalINSA Sunder Lal Hora MedalBirbal Sahni Birth Centenary Medal Toppur Seethapathy Sadasivan (M...

 

20th-century total solar eclipse Solar eclipse of June 20, 1974MapType of eclipseNatureTotalGamma−0.8239Magnitude1.0592Maximum eclipseDuration309 s (5 min 9 s)Coordinates32°06′S 103°42′E / 32.1°S 103.7°E / -32.1; 103.7Max. width of band344 km (214 mi)Times (UTC)Greatest eclipse4:48:04ReferencesSaros146 (25 of 76)Catalog # (SE5000)9452 A total solar eclipse occurred on June 20, 1974. A solar eclipse occurs when the Moon passe...

 

Ejen Ali: The MoviePoster resmiSutradaraUsamah Zaid Yasin[1]Ditulis olehUsamah Zaid YasinShafiq IsaFuad Md DinBerdasarkanEjen Ali oleh Usamah Zaid YasinPemeranIda Rahayu YusoffNabilah RaisAzman ZulkiplyNoorhayati Maslini OmarShafiq IsaSalina Salmee Mohd AliAbu Shafian Abd HamidAhmad Sufian MazilanMegat Zahrin Megat HishamAltimetPenata musikAzri YunusHakim KamalPerusahaanproduksiWAU AnimationDistributorPrimeworks StudiosTanggal rilis28 November 2019Durasi97 menitNegaraMalaysiaBah...

Это служебный список статей, созданный для координации работ по развитию темы. Его необходимо преобразовать в информационный список или глоссарий, в противном случае перенести в один из проектов.Данный шаблон не устанавливается на информационные списки и глоссарии....

 

Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. Ви можете допомогти вдосконалити цю статтю, погодивши її із чинними мовними стандартами. (січень 2017) Ця стаття містить текст, що не відповідає енциклопедичному ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!