Church–Rosser theorem

In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result.

More precisely, if there are two distinct reductions or sequences of reductions that can be applied to the same term, then there exists a term that is reachable from both results, by applying (possibly empty) sequences of additional reductions.[1] The theorem was proved in 1936 by Alonzo Church and J. Barkley Rosser, after whom it is named.

The theorem is symbolized by the adjacent diagram: If term a can be reduced to both b and c, then there must be a further term d (possibly equal to either b or c) to which both b and c can be reduced. Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda calculus has at most one normal form, justifying reference to "the normal form" of a given normalizable term.

History

In 1936, Alonzo Church and J. Barkley Rosser proved that the theorem holds for β-reduction in the λI-calculus (in which every abstracted variable must appear in the term's body). The proof method is known as "finiteness of developments", and it has additional consequences such as the Standardization Theorem, which relates to a method in which reductions can be performed from left to right to reach a normal form (if one exists). The result for the pure untyped lambda calculus was proved by D. E. Schroer in 1965.[2]

Pure untyped lambda calculus

One type of reduction in the pure untyped lambda calculus for which the Church–Rosser theorem applies is β-reduction, in which a subterm of the form is contracted by the substitution . If β-reduction is denoted by and its reflexive, transitive closure by then the Church–Rosser theorem is that:[3]

A consequence of this property is that two terms equal in must reduce to a common term:[4]

The theorem also applies to η-reduction, in which a subterm is replaced by . It also applies to βη-reduction, the union of the two reduction rules.

Proof

For β-reduction, one proof method originates from William W. Tait and Per Martin-Löf.[5] Say that a binary relation satisfies the diamond property if:

Then the Church–Rosser property is the statement that satisfies the diamond property. We introduce a new reduction whose reflexive transitive closure is and which satisfies the diamond property. By induction on the number of steps in the reduction, it thus follows that satisfies the diamond property.

The relation has the formation rules:

  • If and then and and

The η-reduction rule can be proved to be Church–Rosser directly. Then, it can be proved that β-reduction and η-reduction commute in the sense that:[6]

If and then there exists a term such that and .

Hence we can conclude that βη-reduction is Church–Rosser.[7]

Normalisation

A reduction rule that satisfies the Church–Rosser property has the property that every term M can have at most one distinct normal form, as follows: if X and Y are normal forms of M then by the Church–Rosser property, they both reduce to an equal term Z. Both terms are already normal forms so .[4]

If a reduction is strongly normalising (there are no infinite reduction paths) then a weak form of the Church–Rosser property implies the full property (see Newman's lemma). The weak property, for a relation , is:[8]

if and then there exists a term such that and .

Variants

The Church–Rosser theorem also holds for many variants of the lambda calculus, such as the simply-typed lambda calculus, many calculi with advanced type systems, and Gordon Plotkin's beta-value calculus. Plotkin also used a Church–Rosser theorem to prove that the evaluation of functional programs (for both lazy evaluation and eager evaluation) is a function from programs to values (a subset of the lambda terms).

In older research papers, a rewriting system is said to be Church–Rosser, or to have the Church–Rosser property, when it is confluent.

Notes

  1. ^ Alama (2017).
  2. ^ Barendregt (1984), p. 283.
  3. ^ Barendregt (1984), p. 53–54.
  4. ^ a b Barendregt (1984), p. 54.
  5. ^ Barendregt (1984), p. 59-62.
  6. ^ Barendregt (1984), p. 64–65.
  7. ^ Barendregt (1984), p. 66.
  8. ^ Barendregt (1984), p. 58.

References

  • Alama, Jesse (2017). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Fall 2017 ed.). Metaphysics Research Lab, Stanford University.
  • Church, Alonzo; Rosser, J. Barkley (May 1936), "Some properties of conversion" (PDF), Transactions of the American Mathematical Society, 39 (3): 472–482, doi:10.2307/1989762, JSTOR 1989762.
  • Barendregt, Hendrik Pieter (1984), The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and the Foundations of Mathematics, vol. 103 (Revised ed.), North Holland, Amsterdam, ISBN 0-444-87508-5, archived from the original on 2004-08-23. Errata.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) حملة فكر قبل أن تتحدث البلد الولايات المتحدة  المقر الرئيسي نيويورك  تعديل مصدري - تعديل   حملة فكر قبل أن تتحدث هي حملة تلفزيونية، إذاعية ومجلة تم نشر

 

Latin Catholic ecclesiastical jurisdiction in Alaska, United States Diocese of FairbanksDioecesis de FairbanksSacred Heart CathedralCoat of armsLocationCountry United StatesTerritoryNorthern Alaska Ecclesiastical provinceAnchorage-JuneauStatisticsArea409,849 sq mi (1,061,500 km2)Population- Total- Catholics(as of 2016)167,54412,475 (7.4%)Parishes46InformationDenominationCatholicSui iuris churchLatin ChurchRiteRoman RiteEstablishedAugust 8, 1962...

 

Coordenadas: 48° 58' 29 N 1° 14' 17 E Saint-Luc   Comuna francesa    Localização Saint-LucLocalização de Saint-Luc na França Coordenadas 48° 58' 29 N 1° 14' 17 E País  França Região Normandia Departamento Eure Características geográficas Área total 5,08 km² População total (2018) [1] 264 hab. Densidade 52 hab./km² Código Postal 27930 Código INSEE 27560 Saint-Luc é uma comuna francesa na região admin...

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (серпень 2023) ТікайBeat It Жанр короткометражка, комедіяРежисер Гілберт ПреттПро

 

2020 American sports-drama film directed by Gavin O'Connor This article is about American sports drama. For coming-of-age comedy-drama, see The Way, Way Back. The Way BackTheatrical release posterDirected byGavin O'ConnorWritten byBrad IngelsbyProduced by Gordon Gray Jennifer Todd Gavin O'Connor Ravi Mehta Starring Ben Affleck Al Madrigal Michaela Watkins Janina Gavankar CinematographyEduard GrauEdited byDavid RosenbloomMusic byRob SimonsenProductioncompanies Warner Bros. Pictures Bron Creati...

 

Iglesia Matriz de Nuestra Señora del Pilar Igreja Matriz Nossa Senhora do Pilar  Patrimonio de la Humanidad (incluido en el ámbito de «Centro histórico de Ouro Preto», n.º ref. 124) (1980) Fachada de la iglesiaLocalizaciónPaís Brasil BrasilDivisión  Minas GeraisLocalidad Ouro PretoCoordenadas 20°23′12″S 43°30′28″O / -20.386728, -43.507649Información religiosaCulto catolicismoUso museoAño de inscripción 1939[editar datos en Wikidata...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016) منتخب كوبا لكرة الماء الإتحاد إتحاد كوبا لكرة الماء الإتحاد القاري إتحاد الأمريكيتان لكرة الماء FINA code CUB ال

 

Railway station in New South Wales, Australia BargoSouthbound viewGeneral informationLocationOld Hume Highway, BargoAustraliaCoordinates34°17′28″S 150°34′48″E / 34.291013°S 150.580078°E / -34.291013; 150.580078Elevation340 metres (1,120 ft)Owned byTransport Asset Holding EntityOperated byNSW TrainLinkLine(s)Main SouthDistance102.87 kilometres from Central[1]Platforms2 sideTracks2ConnectionsBusConstructionStructure typeGroundOther informationSta...

 

Chinese smartphone An editor has performed a search and found that sufficient sources exist to establish the subject's notability. These sources can be used to expand the article and may be described in edit summaries or found on the talk page. The article may include original research, or omit significant information about the subject. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Realme 3 ...

Historic house in Maryland, United States United States historic placeMount HopeU.S. National Register of Historic Places Mount Hope, December 2008Show map of MarylandShow map of the United StatesLocation1 Cheverly Circle, Cheverly, MarylandCoordinates38°55′20″N 76°54′47″W / 38.92222°N 76.91306°W / 38.92222; -76.91306Area1.1 acres (0.45 ha)Built1839 (1839)ArchitectMagruder, Fielder, Jr.NRHP reference No.78003180[1]Added to NRHPNo...

 

Private university in Metro Manila, Philippines University of Santo TomasPamantasan ng Santo Tomas (Filipino)Latin: Pontificia et Regalis Sancti Thomæ Aquinatis Universitas ManilanaFormer namesSee listMottoVeritas in CaritateMotto in EnglishTruth in CharityTypePrivate coeducational non-profit research universityEstablishedApril 28, 1611; 412 years ago (April 28, 1611)FounderMiguel de BenavidesReligious affiliationRoman Catholic (Dominican)Academic affiliations ICUSTA A...

 

1970 single by Charley PrideIs Anybody Goin' to San Antone?Single by Charley Pridefrom the album Charley Pride's 10th Album B-sideThings Are Looking Up (U.S.) Wings of a Dove (Intl.)ReleasedFebruary 1970GenreCountryLength2:13LabelRCASongwriter(s)Glenn MartinDave KirbyProducer(s)Jack ClementCharley Pride singles chronology (I'm So) Afraid of Losing You Again (1969) Is Anybody Goin' to San Antone? (1970) Wonder Could I Live There Anymore (1970) Is Anybody Goin' to San Antone is a song written b...

Indian scholar and teacher For other people with the same name, see Nazir Ahmed (disambiguation). Nazir AhmedBorn(1915-01-03)3 January 1915Kolahi Gareeb, (Gorra) GondaDied19 October 2008(2008-10-19) (aged 93)AligarhResting placeAligarh Muslim University GraveyardOccupation(s)Indian Scholar and WriterChildrenProfessor Rehana KhatoonAwards Padma Shri, Ghalib Award, Presidential Award and Lifetime Fellowship, Khusro Award, Hafez Sanaash, Jaizah Afshar, Nazir Ahmed (1915-2008) was an Indian ...

 

Battle occurring during the Greek War of Independence Battle of LalasPart of the Greek War of IndependenceAndreas Metaxas during the Battle of Lalasby Peter von HessDate9 - 13 June 1821LocationLalas, Morea Eyalet, Ottoman Empire (now Elis, Greece)37°42′37.57″N 21°43′10.16″E / 37.7104361°N 21.7194889°E / 37.7104361; 21.7194889Result Greek victoryBelligerents Greek revolutionaries Ottoman EmpireCommanders and leaders Andreas Metaxas  (WIA)Konstantinos Me...

 

Arab Muslim theologian, writer and scholar (767–820) Imam Shafi redirects here. For the village in Iran, see Emam Safi. For the Egyptian surname with the same Arabic spelling, see El-Shafei. al-Shafi'iاَلشَّافِعِيُّTitleShaykh al-IslāmPersonalBorn767 CE 150 AH Gaza[citation needed], Abbasid CaliphateDied19 January 820 CE (aged 54) 204 AH al-Fustat, Abbasid CaliphateReligionIslamEraIslamic Golden AgeDenominationSunniJurisprudenceMujtahidMain interest(s)Fiqh, HadithNota...

Museums in Erbil The Kurdistan Music Archive within the Citadel of Erbil, Hawler, Iraq The Kurdistan Music Archive is a one-room exhibition-like archive that occupies one of the renovated traditional buildings at the Citadel of Erbil. The current director (and owner) is Amjad Assad. Assad, almost working alone with no external help, has been digitizing, for several years, thousands of cassette tapes and 78 rpm phonographs of Kurdish music and songs spanning about 100 years. Originally, the ar...

 

22nd episode of the 4th season of Phineas and Ferb Phineas and Ferb: Mission MarvelPhineas and Ferb episodeLogo of the specialEpisode no.Season 4Episode 22Directed byRobert F. HughesSue PerrottoWritten byDani VetereJim BernsteinMartin OlsonScott PetersonFeatured musicSurfin' AsteroidsMy StreetsMy Evil Buddies and MeOnly Trying to HelpFeelin' SuperFeeling FroggyProduction code411–412Original air dateAugust 16, 2013 (2013-08-16)Guest appearances Chi McBride as Nick Fury Tr...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2023) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً ...

French actor (born 1963) Denis PodalydèsPodalydès in 2018Born (1963-04-22) 22 April 1963 (age 60)Versailles, FranceOccupationActorYears active1988–present Denis Podalydès (French: [dəni pɔdalidɛs]; born 22 April 1963) is a French actor and scriptwriter of Greek descent.[1] Podalydès has appeared in more than 140 films and television shows since 1989. He starred in The Officers' Ward, which was entered into the 2001 Cannes Film Festival.[2] Career He ...

 

トマス・ア・ケンピス トマス・ア・ケンピス(Thomas à Kempis、1379年(1380年) - 1471年7月25日)は、中世の神秘思想家。彼の著した信心書『キリストに倣いて』(イミタツィオ・クリスティ)は、聖書に次いで最も読まれた本であるとさえ言われる。 生涯 トマスはドイツのケルン北西、ケンペンで1379年(1380年)に生まれ、オランダのアムステルダムの北東ズウォレで1471年7月25...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!