Bipartite network projection is an extensively used method for compressing information about bipartite networks.[1] Since the one-mode projection is always less informative than the original bipartite graph, an appropriate method for weighting network connections is often required. Optimal weighting methods reflect the nature of the specific network, conform to the designer's objectives and aim at minimizing information loss.
Bipartite networks are a particular class of complex networks, whose nodes are divided into two sets X and Y, and only connections between two nodes in different sets are allowed. For the convenience of directly showing the relation structure among a particular set of nodes, bipartite networks are usually compressed by one-mode projection. This means that the ensuing network contains nodes of only either of the two sets, and two X (or, alternatively, Y) nodes are connected only when they have at least one common neighboring Y (or, alternatively, X) node.
The simplest method involves projecting the bipartite network onto an unweighted network, without taking into account the topology of the network or the frequency of sharing a connection to the elements of the opposing set. Since bipartite networks with largely different structures can have exactly the same one-mode representation in this case, a lucid illustration of the original network topology usually requires the use of some weighting method.
According to the designer's needs and the topological properties of the given network, several different weighting methods have been proposed. Since the redistribution of weights is found to have a strong effect on the community structure (especially in dense networks), the methodological choice must be made with care.[2]
Each weighting method yields a weighted unipartite or one-mode network, where the weights reflect the extent to which two nodes shared common neighbors in the original bipartite network. The values of these weights depend on the degrees of the two sets of nodes in the original bipartite network. For example, in a co-authorship network,[4] the number of observed co-authorships depends on (1) the number of papers each author wrote and (2) the number of authors on each paper. Backbone algorithms designed for bipartite projections (in contrast to other weighted network backbone algorithms such as the disparity filter) use this information from the original bipartite network to identify statistically significantly large (or small) weights in the projection.[5] When only the edges with statistically significant weights are retained, these algorithms yield an unweighted and typically sparse "backbone" network that can be more informative to analyze and visualize.