BET theory

Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The observations are very often referred to as physical adsorption or physisorption. In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller presented their theory in the Journal of the American Chemical Society.[1] BET theory applies to systems of multilayer adsorption that usually utilizes a probing gas (called the adsorbate) that does not react chemically with the adsorptive (the material upon which the gas attaches to) to quantify specific surface area. Nitrogen is the most commonly employed gaseous adsorbate for probing surface(s). For this reason, standard BET analysis is most often conducted at the boiling temperature of N2 (77 K). Other probing adsorbates are also utilized, albeit less often, allowing the measurement of surface area at different temperatures and measurement scales. These include argon, carbon dioxide, and water. Specific surface area is a scale-dependent property, with no single true value of specific surface area definable, and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section.[2]

Concept

BET model of multilayer adsorption, that is, a random distribution of sites covered by one, two, three, etc., adsorbate molecules.

The concept of the theory is an extension of the Langmuir theory, which is a theory for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:

  1. gas molecules physically adsorb on a solid in layers infinitely;
  2. gas molecules only interact with adjacent layers; and
  3. the Langmuir theory can be applied to each layer.
  4. the enthalpy of adsorption for the first layer is constant and greater than the second (and higher).
  5. the enthalpy of adsorption for the second (and higher) layers is the same as the enthalpy of liquefaction.

The resulting BET equation is

where c is referred to as the BET C-constant, is the vapor pressure of the adsorptive bulk liquid phase which would be at the temperature of the adsorbate and θ is the surface coverage, defined as:

.

Here is the amount of adsorbate and is called the monolayer equivalent. The is the entire amount that would be present as a monolayer (which is theoretically impossible for physical adsorption[citation needed]) that would cover the surface with exactly one layer of adsorbate. The above equation is usually rearranged to yield the following equation for the ease of analysis:

where and are the equilibrium and the saturation pressure of adsorbates at the temperature of adsorption, respectively; is the adsorbed gas quantity (for example, in volume units) while is the monolayer adsorbed gas quantity. is the BET constant,

where is the heat of adsorption for the first layer, and is that for the second and higher layers and is equal to the heat of liquefaction or heat of vaporization.

BET plot

Equation (1) is an adsorption isotherm and can be plotted as a straight line with on the y-axis and on the x-axis according to experimental results. This plot is called a BET plot. The linear relationship of this equation is maintained only in the range of . The value of the slope and the y-intercept of the line are used to calculate the monolayer adsorbed gas quantity and the BET constant . The following equations can be used:

The BET method is widely used in materials science for the calculation of surface areas of solids by physical adsorption of gas molecules. The total surface area and the specific surface area are given by

where is in units of volume which are also the units of the monolayer volume of the adsorbate gas, is the Avogadro number, the adsorption cross section of the adsorbate,[3] the molar volume of the adsorbate gas, and the mass of the solid sample or adsorbent.

Derivation

The BET theory can be derived similarly to the Langmuir theory, but by considering multilayered gas molecule adsorption, where it is not required for a layer to be completed before an upper layer formation starts. Furthermore, the authors made five assumptions:[4]

  1. Adsorptions occur only on well-defined sites of the sample surface (one per molecule)
  2. The only molecular interaction considered is the following one: a molecule can act as a single adsorption site for a molecule of the upper layer.
  3. The uppermost molecule layer is in equilibrium with the gas phase, i.e. similar molecule adsorption and desorption rates.
  4. The desorption is a kinetically limited process, i.e. a heat of adsorption must be provided:
    • these phenomena are homogeneous, i.e. same heat of adsorption for a given molecule layer.
    • it is E1 for the first layer, i.e. the heat of adsorption at the solid sample surface
    • the other layers are assumed similar and can be represented as condensed species, i.e. liquid state. Hence, the heat of adsorption is EL is equal to the heat of liquefaction.
  5. At the saturation pressure, the molecule layer number tends to infinity (i.e. equivalent to the sample being surrounded by a liquid phase)

Consider a given amount of solid sample in a controlled atmosphere. Let θi be the fractional coverage of the sample surface covered by a number i of successive molecule layers. Let us assume that the adsorption rate Rads,i-1 for molecules on a layer (i-1) (i.e. formation of a layer i) is proportional to both its fractional surface θi-1 and to the pressure P, and that the desorption rate Rdes,i on a layer i is also proportional to its fractional surface θi:

where ki and ki are the kinetic constants (depending on the temperature) for the adsorption on the layer (i−1) and desorption on layer i, respectively. For the adsorptions, these constants are assumed similar whatever the surface. Assuming an Arrhenius law for desorption, the related constants can be expressed as

where Ei is the heat of adsorption, equal to E1 at the sample surface and to EL otherwise.

Consider some substance A. The adsorption of A onto an available surface site produces a new site on the first layer. In summary,

Extending this to higher order layers one obtains

and similarly

Denoting the activity of the number of available sites of the th layer with and the partial pressure of A with , the last equilibrium can be written

It follows that the coverage of the first layer can be written

and that the coverage of the second layer can be written

Realising that the adsorption of A onto the second layer is equivalent to adsorption of A onto its own liquid phase,[1] the rate constant for should be the same, which results in the recursion

In order to simplify some infinite summations, let and let . Then the th layer coverage can written

if . The coverage of any layer is defined as the relative number of available sites. An alternative definition, which leads to a set of coverage's that are numerically to those resulting from the original way of defining surface coverage, is that denotes the relative number of sites covered by only adsorbents.[1] Doing so it is easy to see that the total volume of adsorbed molecules can be written as the sum

where is the molecular volume. Employing the fact that this sum is the first derivative of a geometric sum, the volume becomes

Since the total coverage of a mono-layer must be unity, the full mono-layer coverage must be

In order to properly make the substitution for , the restriction forces us to take the zeroth contribution outside the summation, resulting in

Lastly, defining the excess coverage as , the excess volume relative to the volume of an adsorbed mono-layer becomes

where the last equality was obtained by making use of the series expansions presented above. The constant must be interpreted as the relative binding affinity the substance A has towards a surface, relative to its own liquid. If then the initial part of the isotherm will be reminiscent of the Langmuir isotherm which reaches a plateau at full mono-layer coverage, whereas means the mono-layer will have a slow build-up. Another thing to note is that in order for the geometric substitutions to hold, . The isotherm above exhibits a singularity at . Since one can write , implying that . This means that must be true, ultimately resulting in .

Finding the linear BET range

It is still not clear on how to find the linear range of the BET plot for microporous materials in a way that reduces any subjectivity in the assessment of the monolayer capacity. A crowd-sourced study involving 61 research groups has shown that reproducibility of BET area determination from identical isotherms is, in some cases, problematic.[5] Rouquerol et al.[6] suggested a procedure that is based on two criteria:

  • C must be positive implying that any negative intercept on the BET plot indicates that one is outside the valid range of the BET equation.
  • Application of the BET equation must be limited to the range where the term V(1-P/P0) continuously increases with P/P0.

These corrections are an attempt to salvage the BET theory, which is restricted to type II isotherms. Even while using this type, use of the data itself is restricted to 0.05 to 0.35 of , routinely discarding 70% of the data. This restriction must be modified depending upon conditions.

Limitations of BET

Terrell L. Hill described BET as a theory that is "... extremely useful as a qualitative guide; but it is not quantitatively correct".[7] Although BET adsorption isotherm is still extensively used for different applications and is used for specific surface area determinations of powders whose calculation is not sensitive to the simplifications of the BET theory.[7] Both Hackerman's[8] and Sing's group[9] have highlighted the limitations of the BET method.[10] Hackerman et al. noted the potential for 10% uncertainty in the method's values,[8] with Sing's group attributed the significant variation in reported values of molecular area to the BET method's possible inaccurate assessment of monolayer capacity.[10] In subsequent studies using the BET interpretation of nitrogen and water vapor adsorption isotherms, the reported area occupied by an adsorbed water molecule on fully hydroxylated silica ranged from 0.25 to 0.44 nm².[10] Other issues with the BET include the fact that in certain cases, BET leads to anomalies such as reaching an infinite amount adsorbed at reaching unity,[11] and in some cases, the constant C (surface binding energy) can be determined to be negative.[12]

Applications

Cement and concrete

The rate of curing of concrete depends on the fineness of the cement and of the components used in its manufacture, which may include fly ash, silica fume and other materials, in addition to the calcinated limestone which causes it to harden. Although the Blaine air permeability method is often preferred, due to its simplicity and low cost, the nitrogen BET method is also used.

When hydrated cement hardens, the calcium silicate hydrate (or C-S-H), which is responsible for the hardening reaction, has a large specific surface area because of its high porosity. This porosity is related to a number of important properties of the material, including the strength and permeability, which in turn affect the properties of the resulting concrete. Measurement of the specific surface area using the BET method is useful for comparing different cements. This may be performed using adsorption isotherms measured in different ways, including the adsorption of water vapour at temperatures near ambient, and adsorption of nitrogen at 77 K (the boiling point of liquid nitrogen). Different methods of measuring cement paste surface areas often give very different values, but for a single method the results are still useful for comparing different cements.

Activated carbon

Activated carbon has strong affinity for many gases and has an adsorption cross section of 0.162 nm2 for nitrogen adsorption at liquid-nitrogen temperature (77 K). BET theory can be applied to estimate the specific surface area of activated carbon from experimental data, demonstrating a large specific surface area, even around 3000 m2/g.[13] However, this surface area is largely overestimated due to enhanced adsorption in micropores,[6] and more realistic methods should be used for its estimation, such as the subtracting pore effect (SPE) method.[14]

Catalysis

In the field of solid catalysis, the surface area of catalysts is an important factor in catalytic activity. Inorganic materials such as mesoporous silica and layered clay minerals have high surface areas of several hundred m2/g calculated by the BET method, indicating the possibility of application for efficient catalytic materials.

Specific surface area calculation

The ISO 9277 standard for calculating the specific surface area of solids is based on the BET method.

Thermal desorption

In 2023, researchers in the United States developed a method to determine BET surface areas using a thermogravimetric analyzer (TGA).[15] This method uses a TGA to heat a porous sample loaded with an adsorbate, the produced plot of sample mass vs. temperature is then mapped into a standard isotherm to which BET theory is applied as normal. Common fluids, e.g. water or toluene, can be used as adsorbates for the TGA method allowing the specific interactions of different adsorbates to be determined, as these frequently differ from the commonly used nitrogen.

See also

References

  1. ^ a b c Brunauer, Stephen; Emmett, P. H.; Teller, Edward (February 1938). "Adsorption of Gases in Multimolecular Layers". Journal of the American Chemical Society. 60 (2): 309–319. doi:10.1021/ja01269a023.
  2. ^ Hanaor, D. A. H.; Ghadiri, M.; Chrzanowski, W.; Gan, Y. (2014). "Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption" (PDF). Langmuir. 30 (50): 15143–15152. arXiv:2106.03411. doi:10.1021/la503581e. PMID 25495551. S2CID 4697498.
  3. ^ Galarneau, Anne; Mehlhorn, Dirk; Guenneau, Flavien; Coasne, Benoit; Villemot, Francois; Minoux, Delphine; Aquino, Cindy; Dath, Jean-Pierre (2018-10-31). "Specific Surface Area Determination for Microporous/Mesoporous Materials: The Case of Mesoporous FAU-Y Zeolites" (PDF). Langmuir. 34 (47). American Chemical Society (ACS): 14134–14142. doi:10.1021/acs.langmuir.8b02144. ISSN 0743-7463. PMID 30379547. S2CID 53197261.
  4. ^ Sing, Kenneth S.W. (1998). "Adsorption methods for the characterization of porous materials". Advances in Colloid and Interface Science. 76–77: 3–11. doi:10.1016/S0001-8686(98)00038-4.
  5. ^ Osterrieth, Johannes W. M.; Rampersad, James; Madden, David; Rampal, Nakul; Skoric, Luka; Connolly, Bethany; Allendorf, Mark D.; Stavila, Vitalie; Snider, Jonathan L.; Ameloot, Rob; Marreiros, João (2022-05-23). "How Reproducible are Surface Areas Calculated from the BET Equation?". Advanced Materials. 34 (27): 2201502. Bibcode:2022AdM....3401502O. doi:10.1002/adma.202201502. hdl:10754/678181. ISSN 0935-9648. PMID 35603497. S2CID 236753643.
  6. ^ a b Rouquerol, J.; Llewellyn, P.; Rouquerol, F. (2007), "Is the bet equation applicable to microporous adsorbents?", Studies in Surface Science and Catalysis, vol. 160, Elsevier, pp. 49–56, doi:10.1016/s0167-2991(07)80008-5, ISBN 9780444520227
  7. ^ a b Hill, Terrell L. (1952-01-01), Frankenburg, W. G.; Komarewsky, V. I.; Rideal, E. K. (eds.), "Theory of Physical Adsorption", Advances in Catalysis, vol. 4, Academic Press, pp. 211–258, doi:10.1016/s0360-0564(08)60615-x, retrieved 2023-07-22
  8. ^ a b Makrides, A. C.; Hackerman, Norman (April 1959). "Heats of Immersion. I. The System Silica–water". The Journal of Physical Chemistry. 63 (4): 594–598. doi:10.1021/j150574a035. ISSN 0022-3654.
  9. ^ Baker, Frederick S; Sing, Kenneth S.W (June 1976). "Specificity in the adsorption of nitrogen and water on hydroxylated and dehydroxylated silicas". Journal of Colloid and Interface Science. 55 (3): 605–613. doi:10.1016/0021-9797(76)90071-0. ISSN 0021-9797.
  10. ^ a b c Narayanaswamy, Nagarajan; Ward, C. A. (2020-03-27). "Area Occupied by a Water Molecule Adsorbed on Silica at 298 K: Zeta Adsorption Isotherm Approach". The Journal of Physical Chemistry C. 124 (17): 9269–9280. doi:10.1021/acs.jpcc.9b11976. ISSN 1932-7447.
  11. ^ Saber, Sepehr; Narayanaswamy, Nagarajan; Ward, C. A.; Elliott, Janet A. W. (2023-05-28). "Experimental examination of the phase transition of water on silica at 298 K". The Journal of Chemical Physics. 158 (20). doi:10.1063/5.0145932. ISSN 0021-9606.
  12. ^ Al-Ghouti, Mohammad A.; Da'ana, Dana A. (July 2020). "Guidelines for the use and interpretation of adsorption isotherm models: A review". Journal of Hazardous Materials. 393: 122383. doi:10.1016/j.jhazmat.2020.122383. ISSN 0304-3894.
  13. ^ Nakayama, Atsuko; Suzuki, Kazuya; Enoki, Toshiaki; Koga, Kei-ichi; Endo, Morinobu; Shindo, Norifumi (1996). "Electronic and Magnetic Properties of Activated Carbon Fibers". Bull. Chem. Soc. Jpn. 69 (2): 333–339. doi:10.1246/bcsj.69.333. ISSN 0009-2673. Retrieved 2015-06-26.
  14. ^ Kaneko, K.; Ishii, C.; Ruike, M.; Kuwabara, H. (1992). "Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons". Carbon. 30 (7): 1075–1088. doi:10.1016/0008-6223(92)90139-N. ISSN 0008-6223.
  15. ^ Stahlfeld, K.; Belmont, E. (2023). "BET and Kelvin Analyses by Thermogravimetric Desorption". Langmuir. 39 (25): 8814–8823. doi:10.1021/acs.langmuir.3c00854. ISSN 0743-7463.

Read other articles:

Củng Lưuتوققۇزتارا ناھىيىسى 巩留县—  Huyện  — Vị trí Củng Lưu (đỏ) tại Ili (vàng) và Tân CươngCủng LưuQuốc giaTrung QuốcKhu tự trịTân CươngChâu tự trịIli (Y Lê)Thủ phủLỗi Lua trong Mô_đun:Wikidata tại dòng 98: attempt to concatenate local 'label' (a nil value).Diện tích • Tổng cộng4.119 km2 (1,590 mi2)Dân số  • Tổng cộng160,000...

1963 film by George Sidney A Ticklish AffairDirected byGeorge SidneyScreenplay byRuth Brooks FlippenBased onMoon Walk1962 Ladies Home Journalby Barbara LutherProduced byJoe PasternakStarringShirley JonesGig YoungRed ButtonsCinematographyMilton R. KrasnerEdited byJohn McSweeney, Jr.Music byGeorge StollColor processMetrocolorProductioncompaniesEuterpe, Inc.Distributed byMetro-Goldwyn-Mayer (MGM)Release date August 18, 1963 (1963-08-18) Running time88 minutesCountryUnited StatesLa...

Buddhist temple in Sri Lanka Magul Maha Viharayaමඟුල් මහා විහාරයGranite entrance to an ancient stupa at Magul Maha ViharayaReligionAffiliationBuddhismDistrictAmparaProvinceEastern provinceLocationLocationLahugala, Sri LankaGeographic coordinates06°52′03″N 81°44′12″E / 6.86750°N 81.73667°E / 6.86750; 81.73667ArchitectureTypeBuddhist TempleFounderKing Kavan Tissa (205-161 BC) or King Dhatusena (463-479 AD)Completed2nd century BC Ma...

Stadium in Brunei This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hassanal Bolkiah National Stadium – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Hassanal Bolkiah National Stadium Stadium Negara Hassanal BolkiahThe interior of the stadium i...

Commune in Occitania, FranceMontbolo MontbolóCommuneThe road into Montbolo Coat of armsLocation of Montbolo MontboloShow map of FranceMontboloShow map of OccitanieCoordinates: 42°29′09″N 2°39′21″E / 42.4858°N 2.6558°E / 42.4858; 2.6558CountryFranceRegionOccitaniaDepartmentPyrénées-OrientalesArrondissementCéretCantonLe CanigouIntercommunalityHaut VallespirGovernment • Mayor (2020–2026) Hervé Colas[1]Area121.98 km2 (8.49...

Representasi visual dari sebuah program linear sederhana dengan dua variabel dan enam pertidaksamaan. Himpunan solusi feasibel digambarkan oleh poligon (politop dalam dimensi-2) dengan isi berwarna kuning. Fungsi objektif linear ditandai oleh garis merah dan anak panah: Garis merah menandakan nilai dari fungsi objektif, sedangkan anak panah menandakan arah optimisasi yang diinginkan. Pada masalah optimisasi dengan tiga variabel, daerah feasibel yang tertutup akan membentuk sebuah polihedron k...

Neurodiversity paradigm Philosophy Bodily autonomy Disability rights movement Independent living movement Self-advocacy Organizations Aspies For Freedom Autism Network International Autistic Self Advocacy Network National Autistic Society Events Autism Acceptance Day & Month Autism History Month Autistic Pride Day Autscape Disability Day of Mourning Weird Pride Day Issues Ableism Anti-autism All in a Row Applied behavior analysis Augmentative and alternative communication Autism-friendly ...

Tory Lanez discographyTory Lanez in July 2016Studio albums7Music videos90EPs4Singles89Mixtapes20 Canadian rapper and singer Tory Lanez has released seven studio albums, Twenty mixtapes, four extended plays (EP), eighty-nine singles (including forty-nine as a featured artist) and more than eighty music videos. In 2009, Lanez began his career by releasing his debut mixtape, T.L 2 T.O. He received major recognition from the mixtape, Conflicts of My Soul: The 416 Story, released in August 2013, w...

Russian physicist (1932–2005) Anatoly LarkinBornAnatoly Ivanovich Larkin(1932-10-14)October 14, 1932Kolomna, Soviet UnionDiedAugust 4, 2005(2005-08-04) (aged 72)Aspen, Colorado, U.S.NationalityRussian (1932–2005)American (2003–2005)Alma materMoscow Institute for Physical EngineeringScientific careerFieldsPhysicsInstitutionsKurchatov Institute of Atomic Energy in MoscowL.D.Landau Institute for Theoretical PhysicsUniversity of Minnesota, MinneapolisDoctoral advisorArkady Migdal ...

Northern Irish footballer (1883–1979) Not to be confused with William McCracken, William P. MacCracken Jr., or William D. McCrackan. Bill McCracken Personal informationFull name William McCrackenDate of birth (1883-01-29)29 January 1883Place of birth Belfast, IrelandDate of death 20 January 1979(1979-01-20) (aged 95)Place of death Kingston upon Hull, EnglandHeight 5 ft 9 in (1.75 m)[1]Position(s) DefenderSenior career*Years Team Apps (Gls)1900–1904 Distillery 1...

Siempat Nempu HilirKecamatanPeta lokasi Kecamatan Siempat Nempu HilirNegara IndonesiaProvinsiSumatera UtaraKabupatenDairiPemerintahan • CamatMarhaban KudadiriPopulasi (2021)[1] • Total11.476 jiwa • Kepadatan109/km2 (280/sq mi)Kode pos22263Kode Kemendagri12.11.08 Kode BPS1210090 Luas105,62 km²Desa/kelurahan10 desa Siempat Nempu Hilir adalah sebuah kecamatan yang berada di Kabupaten Dairi, provinsi Sumatera Utara, Indonesia. Ibukota ke...

American technology company This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) Trajectory, Inc.TypeCorporationIndustryPublishing, B...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Abdulrachman Saleh – berita · surat kabar · buku · cendekiawan · JSTOR (Februari 2021) Abdulrachman SalehInformasi pribadiLahir(1909-07-01)1 Juli 1909Batavia, Hindia BelandaMeninggal29 Juli 1947(1947-07-29) (...

1993 film by Anthony Minghella Mr. WonderfulTheatrical release posterDirected byAnthony MinghellaWritten byAmy SchorVicki PolonProduced byMarianne MoloneyStarring Matt Dillon Annabella Sciorra Mary-Louise Parker William Hurt CinematographyGeoffrey SimpsonEdited byJohn TintoriMusic byMichael GoreProductioncompaniesNight Life Inc.The Samuel Goldwyn CompanyDistributed byWarner Bros.(United States)Buena Vista International(International)Release date October 15, 1993 (1993-10-15) Ru...

Austrian footballer (born 1998) Kevin Danso Danso with Lens in 2021Personal informationDate of birth (1998-09-19) 19 September 1998 (age 25)Place of birth Voitsberg, AustriaHeight 1.90 m (6 ft 3 in)Position(s) Centre-backTeam informationCurrent team LensNumber 4Youth career0000 Reading0000–2014 Milton Keynes Dons2014–2016 FC AugsburgSenior career*Years Team Apps (Gls)2016–2018 FC Augsburg II 5 (0)2017–2021 FC Augsburg 41 (3)2019–2020 → Southampton (loan) 6 (0)2...

Pharmacokinetic metrics Peak-to-trough ratio in pharmacokinetics is the ratio of peak (Cmax) and trough (Cmin) levels of a drug over its dosing interval (τ) at steady state. Peak-to-trough ratio (PTR), also known as peak-to-trough variation or peak-to-trough fluctuation, is a parameter in pharmacokinetics which is defined as the ratio of Cmax (peak) concentration and Cmin (trough) concentration over a dosing interval for a given drug.[1][2] A drug with an elimination half-lif...

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Pierrot Tamás Z. Marosi – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) Pierro...

Ada usul agar Tionghoa diganti judulnya dan dipindahkan ke Orang Tionghoa (Diskusikan). Untuk kegunaan lain, lihat Tionghoa (disambiguasi). Kaisar dan Permaisuri Huaxia. Tionghoa atau Tionghwa (asal kata dari Hokkien; Hanzi tradisional: 中華; Hanzi sederhana: 中华; Pinyin: Zhōnghuá; Pe̍h-ōe-jī: Tiong-hôa) atau Huaren (Hanzi tradisional: 華人; Hanzi sederhana: 华人) adalah sebutan di Indonesia untuk orang-orang dari suku atau bangsa Tiongkok.[1]...

Пакет с яблоками объёмом полпека У этого термина существуют и другие значения, см. Пек (значения). Пек (англ. peck) — внесистемная единица объёма сыпучих тел  (англ.) (рус., применявшаяся в США и Великобритании[1], равная 2 галлонам  (англ.) (рус., 8 английс...

Sacred Mountain in Manipur, India Not to be confused with Ebudhou Thangjing Temple. Thangjing HillThangjing HillChurachandpur district, ManipurShow map of ManipurThangjing HillThangjing Hill (India)Show map of India Highest pointElevation6,918 ft (2,109 m)[1]Coordinates24°28′06″N 93°39′45″E / 24.4682°N 93.6624°E / 24.4682; 93.6624GeographyLocationChurachandpur district, ManipurCountryIndia Thangjing Hill, or Thangching Hill, is a moun...