Artin–Tits group

In the mathematical area of group theory, Artin groups, also known as Artin–Tits groups or generalized braid groups, are a family of infinite discrete groups defined by simple presentations. They are closely related with Coxeter groups. Examples are free groups, free abelian groups, braid groups, and right-angled Artin–Tits groups, among others.

The groups are named after Emil Artin, due to his early work on braid groups in the 1920s to 1940s,[1] and Jacques Tits who developed the theory of a more general class of groups in the 1960s.[2]

Definition

An Artin–Tits presentation is a group presentation where is a (usually finite) set of generators and is a set of Artin–Tits relations, namely relations of the form for distinct in , where both sides have equal lengths, and there exists at most one relation for each pair of distinct generators . An Artin–Tits group is a group that admits an Artin–Tits presentation. Likewise, an Artin–Tits monoid is a monoid that, as a monoid, admits an Artin–Tits presentation.

Alternatively, an Artin–Tits group can be specified by the set of generators and, for every in , the natural number that is the length of the words and such that is the relation connecting and , if any. By convention, one puts when there is no relation . Formally, if we define to denote an alternating product of and of length , beginning with — so that , , etc. — the Artin–Tits relations take the form

The integers can be organized into a symmetric matrix, known as the Coxeter matrix of the group.

If is an Artin–Tits presentation of an Artin–Tits group , the quotient of obtained by adding the relation for each of is a Coxeter group. Conversely, if is a Coxeter group presented by reflections and the relations are removed, the extension thus obtained is an Artin–Tits group. For instance, the Coxeter group associated with the -strand braid group is the symmetric group of all permutations of .

Examples

  • is the free group based on ; here for all .
  • is the free abelian group based on ; here for all .
  • is the braid group on strands; here for , and for .

General properties

Artin–Tits monoids are eligible for Garside methods based on the investigation of their divisibility relations, and are well understood:

  • Artin–Tits monoids are cancellative, and they admit greatest common divisors and conditional least common multiples (a least common multiple exists whenever a common multiple does).
  • If is an Artin–Tits monoid, and if is the associated Coxeter group, there is a (set-theoretic) section of into , and every element of admits a distinguished decomposition as a sequence of elements in the image of ("greedy normal form").

Very few results are known for general Artin–Tits groups. In particular, the following basic questions remain open in the general case:

– solving the word and conjugacy problems — which are conjectured to be decidable,
– determining torsion — which is conjectured to be trivial,
– determining the center — which is conjectured to be trivial or monogenic in the case when the group is not a direct product ("irreducible case"),
– determining the cohomology — in particular solving the conjecture, i.e., finding an acyclic complex whose fundamental group is the considered group.

Partial results involving particular subfamilies are gathered below. Among the few known general results, one can mention:

  • Artin–Tits groups are infinite countable.
  • In an Artin–Tits group , the only relation connecting the squares of the elements of is if is in (John Crisp and Luis Paris [3]).
  • For every Artin–Tits presentation , the Artin–Tits monoid presented by embeds in the Artin–Tits group presented by (Paris[4]).
  • Every (finitely generated) Artin–Tits monoid admits a finite Garside family (Matthew Dyer and Christophe Hohlweg[5]). As a consequence, the existence of common right-multiples in Artin–Tits monoids is decidable, and reduction of multifractions is effective.

Particular classes of Artin–Tits groups

Several important classes of Artin groups can be defined in terms of the properties of the Coxeter matrix.

Artin–Tits groups of spherical type

  • An Artin–Tits group is said to be of spherical type if the associated Coxeter group is finite — the alternative terminology "Artin–Tits group of finite type" is to be avoided, because of its ambiguity: a "finite type group" is just one that admits a finite generating set. Recall that a complete classification is known, the 'irreducible types' being labeled as the infinite series , , , and six exceptional groups , , , , , and .
  • In the case of a spherical Artin–Tits group, the group is a group of fractions for the monoid, making the study much easier. Every above-mentioned problem is solved in the positive for spherical Artin–Tits groups: the word and conjugacy problems are decidable, their torsion is trivial, the center is monogenic in the irreducible case, and the cohomology is determined (Pierre Deligne, by geometrical methods,[6] Egbert Brieskorn and Kyoji Saito, by combinatorial methods [7]).
  • A pure Artin–Tits group of spherical type can be realized as the fundamental group of the complement of a finite hyperplane arrangement in .
  • Artin–Tits groups of spherical type are biautomatic groups (Ruth Charney[8]).
  • In modern terminology, an Artin–Tits group is a Garside group, meaning that is a group of fractions for the associated monoid and there exists for each element of a unique normal form that consists of a finite sequence of (copies of) elements of and their inverses ("symmetric greedy normal form")

Right-angled Artin groups

  • An Artin–Tits group is said to be right-angled if all coefficients of the Coxeter matrix are either or , i.e., all relations are commutation relations . The names (free) partially commutative group, graph group, trace group, semifree group or even locally free group are also common.
  • For this class of Artin–Tits groups, a different labeling scheme is commonly used. Any graph on vertices labeled defines a matrix , for which if the vertices and are connected by an edge in , and otherwise.
  • The class of right-angled Artin–Tits groups includes the free groups of finite rank, corresponding to a graph with no edges, and the finitely-generated free abelian groups, corresponding to a complete graph. Every right-angled Artin group of rank r can be constructed as HNN extension of a right-angled Artin group of rank , with the free product and direct product as the extreme cases. A generalization of this construction is called a graph product of groups. A right-angled Artin group is a special case of this product, with every vertex/operand of the graph-product being a free group of rank one (the infinite cyclic group).
  • The word and conjugacy problems of a right-angled Artin–Tits group are decidable, the former in linear time, the group is torsion-free, and there is an explicit cellular finite (John Crisp, Eddy Godelle, and Bert Wiest[9]).
  • Every right-angled Artin–Tits group acts freely and cocompactly on a finite-dimensional CAT(0) cube complex, its "Salvetti complex". As an application, one can use right-angled Artin groups and their Salvetti complexes to construct groups with given finiteness properties (Mladen Bestvina and Noel Brady [10]) see also (Ian Leary [11]).

Artin–Tits groups of large type

  • An Artin–Tits group (and a Coxeter group) is said to be of large type if for all generators ; it is said to be of extra-large type if for all generators .
  • Artin–Tits groups of extra-large type are eligible for small cancellation theory. As an application, Artin–Tits groups of extra-large type are torsion-free and have solvable conjugacy problem (Kenneth Appel and Paul Schupp[12]).
  • Artin–Tits groups of extra-large type are biautomatic (David Peifer[13]).
  • Artin groups of large type are shortlex automatic with regular geodesics (Derek Holt and Sarah Rees[14]).

Other types

Many other families of Artin–Tits groups have been identified and investigated. Here we mention two of them.

  • An Artin–Tits group is said to be of FC type ("flag complex") if, for every subset of such that for all in , the group is of spherical type. Such groups act cocompactly on a CAT(0) cubical complex, and, as a consequence, one can find a rational normal form for their elements and deduce a solution to the word problem (Joe Altobelli and Charney [15]). An alternative normal form is provided by multifraction reduction, which gives a unique expression by an irreducible multifraction directly extending the expression by an irreducible fraction in the spherical case (Dehornoy[16]).
  • An Artin–Tits group is said to be of affine type if the associated Coxeter group is affine. They correspond to the extended Dynkin diagrams of the four infinite families for , , for , and for , and of the five sporadic types , , , , and . Affine Artin–Tits groups are of Euclidean type: the associated Coxeter group acts geometrically on a Euclidean space. As a consequence, their center is trivial, and their word problem is decidable (Jon McCammond and Robert Sulway [17]). In 2019, a proof of the conjecture was announced for all affine Artin–Tits groups (Mario Salvetti and Giovanni Paolini[18]).

See also

References

  1. ^ Artin, Emil (1947). "Theory of Braids". Annals of Mathematics. 48 (1): 101–126. doi:10.2307/1969218. JSTOR 1969218. S2CID 30514042.
  2. ^ Tits, Jacques (1966), "Normalisateurs de tores. I. Groupes de Coxeter étendus", Journal of Algebra, 4: 96–116, doi:10.1016/0021-8693(66)90053-6, MR 0206117
  3. ^ Crisp, John; Paris, Luis (2001), "The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group", Inventiones Mathematicae, 145 (1): 19–36, arXiv:math/0003133, Bibcode:2001InMat.145...19C, doi:10.1007/s002220100138, MR 1839284
  4. ^ Paris, Luis (2002), "Artin monoids inject in their groups", Commentarii Mathematici Helvetici, 77 (3): 609–637, arXiv:math/0102002, doi:10.1007/s00014-002-8353-z, MR 1933791
  5. ^ Dyer, Matthew; Hohlweg, Christophe (2016), "Small roots, low elements, and the weak order in Coxeter groups", Advances in Mathematics, 301: 739–784, arXiv:1505.02058, doi:10.1016/j.aim.2016.06.022, MR 1839284
  6. ^ Deligne, Pierre (1972), "Les immeubles des groupes de tresses généralisés", Inventiones Mathematicae, 17: 273–302, Bibcode:1972InMat..17..273D, doi:10.1007/BF01406236, MR 0422673
  7. ^ Brieskorn, Egbert; Saito, Kyoji (1972), "Artin-Gruppen und Coxeter-Gruppen", Inventiones Mathematicae, 17 (4): 245–271, Bibcode:1972InMat..17..245B, doi:10.1007/BF01406235, MR 0323910
  8. ^ Charney, Ruth (1992), "Artin groups of finite type are biautomatic", Mathematische Annalen, 292 (4): 671–683, doi:10.1007/BF01444642, MR 1157320
  9. ^ Crisp, John; Godelle, Eddy; Wiest, Bert (2009), "The conjugacy problem in subgroups of right-angled Artin groups", Journal of Topology, 2 (3): 442–460, doi:10.1112/jtopol/jtp018, MR 2546582
  10. ^ Bestvina, Mladen; Brady, Noel (1997), "Morse theory and finiteness properties of groups", Inventiones Mathematicae, 129 (3): 445–470, Bibcode:1997InMat.129..445B, doi:10.1007/s002220050168, MR 1465330
  11. ^ Leary, Ian (2018), "Uncountably many groups of type FP", Proceedings of the London Mathematical Society, 117 (2): 246–276, arXiv:1512.06609, doi:10.1112/plms.12135, MR 3851323
  12. ^ Appel, Kenneth I.; Schupp, Paul E. (1983), "Artin Groups and Infinite Coxeter Groups", Inventiones Mathematicae, 72 (2): 201–220, Bibcode:1983InMat..72..201A, doi:10.1007/BF01389320, MR 0700768
  13. ^ Peifer, David (1996), "Artin groups of extra-large type are biautomatic", Journal of Pure and Applied Algebra, 110 (1): 15–56, doi:10.1016/0022-4049(95)00094-1, MR 1390670
  14. ^ Holt, Derek; Rees, Sarah (2012). "Artin groups of large type are shortlex automatic with regular geodesics". Proceedings of the London Mathematical Society. 104 (3): 486–512. arXiv:1003.6007. doi:10.1112/plms/pdr035. MR 2900234.
  15. ^ Altobelli, Joe; Charney, Ruth (2000), "A geometric rational form for Artin groups of FC type", Geometriae Dedicata, 79 (3): 277–289, doi:10.1023/A:1005216814166, MR 1755729
  16. ^ Dehornoy, Patrick (2017), "Multifraction reduction I: The 3-Ore case and Artin–Tits groups of type FC", Journal of Combinatorial Algebra, 1 (2): 185–228, arXiv:1606.08991, doi:10.4171/JCA/1-2-3, MR 3634782
  17. ^ McCammond, Jon; Sulway, Robert (2017), "Artin groups of Euclidean type", Inventiones Mathematicae, 210 (1): 231–282, arXiv:1312.7770, Bibcode:2017InMat.210..231M, doi:10.1007/s00222-017-0728-2, MR 3698343
  18. ^ Paolini, Giovanni; Salvetti, Mario (2019), Proof of the conjecture for affine Artin groups, arXiv:1907.11795

Further reading

Read other articles:

Battle of the SlopesPart of Operation Greeley and Vietnam WarTroops of the 173rd Airborne Brigade during Operation GreeleyDate20-22 June 1967 [1]: 55–62 LocationHill 1388, Kon Tum Province, Republic of VietnamResult PAVN victoryBelligerents United States North VietnamCommanders and leaders John R. Deane Jr.Edward A. PartainFrederick J. Milton UnknownUnits involved Companies A & C, 2nd Battalion, 503rd Infantry Regiment 6th Battalion, 24th RegimentCasualties and l...

 

Simandou Bosque en la cordillera SimandouUbicación geográficaContinente ÁfricaCoordenadas 7°20′54″N 8°57′15″O / 7.3483, -8.9542Ubicación administrativaPaís GuineaCaracterísticasMáxima cota (1658 m)Cumbres Pic de Fon, Pic de Tibé, Pic de GoingLongitud 110 kmMapa de localización Simandou Ubicación (Guinea).[editar datos en Wikidata] Simandou es una cadena montañosa de 110 km localizada en las regiones de Nzérékoré y Kankan, al sureste ...

 

← 1999 •  • 2009 → Elecciones generales de 200457 de 63 escaños de la Asamblea Nacional21 escaños necesarios para la mayoría Fecha Miércoles 30 de octubre de 2004 Tipo Parlamentaria Período 2004-2009 Duración de campaña 5 a 28 de octubre de 2004 Demografía electoral Población 1,859,085 Hab. registrados 552,849 Votantes 421,272 Participación    76.20 %  0.9 % Votos válidos 336,983 Votos nulos 17,483 Resultados BDP ...

В Википедии есть статьи о других людях с такой фамилией, см. Зиятханов.Адиль Хан Абульфат Хан оглы Зиятхановазерб. Adil xan Əbülfət ağa oğlu Ziyadxanov Министр (и.о.) иностранных дел Азербайджанской Демократической Республики 30 октября — 7 декабря 1918 Глава правительства Фатали Хан Хо

 

Bandera gemela de Allende Datos generalesUso Proporción (1:1)Adopción 1810Colores      Azul CelesteDiseño Cuadrada con un cuadro interior a un quinto de la anchura, en el adverso escudo de la virgen en el reverso escudo del águila y la serpiente, con armas y banderas y una efigie de San Miguel ArcángelDiseñador Ignacio AllendeVariantes[editar datos en Wikidata] Las banderas gemelas de Allende son un par de banderas que fueron realizadas ex profeso por ...

 

John Alden Loring John Alden Loring (geboren am 31. März 1871 in Owego, Tioga County, New York, Vereinigte Staaten; gestorben am 8. Mai 1947 ebenda) war ein US-amerikanischer Feldbiologe, Mammaloge und Forschungsreisender. Er begleitete als einer von drei Naturforschern die Smithsonian-Roosevelt African Expedition von 1909 bis 1910. Inhaltsverzeichnis 1 Leben 2 Smithsonian-Roosevelt African Expedition 3 Weitere Tätigkeiten 4 Auszeichnungen 5 Veröffentlichungen 6 Literatur 7 Weblinks 8 Einz...

العلاقات الإيرانية السورينامية إيران سورينام   إيران   سورينام تعديل مصدري - تعديل   العلاقات الإيرانية السورينامية هي العلاقات الثنائية التي تجمع بين إيران وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المق...

 

American racecar driver and TV personality NASCAR driver Ned JarrettNed Jarrett working for MRNBorn (1932-10-12) October 12, 1932 (age 91)Conover, North Carolina, U.S.Achievements1961, 1965 Grand National Series Champion1957, 1958 Sportsman Division Champion1965 Southern 500 WinnerLed Grand National Series in wins 2 times (1964, 1965)AwardsMyers Brothers Memorial Award (1964, 1965, 1982, 1983)National Motorsports Press Association Hall of Fame (1972)North Carolina Sports Hall of Fame (19...

 

Grace KennedyBorn (1958-03-02) 2 March 1958 (age 65)Montego Bay, JamaicaOccupation(s)singer, television presenter, actress, entrepreneurKnown for- TV entertainment show- luxury wedding and event designerTelevisionGrace Kennedy Show Grace Kennedy (born 2 March 1958) is a former BBC British singer and television presenter, now luxury wedding and event designer. Career Grace Kennedy was born at Montego Bay, Jamaica on 2 March 1958.[1] She first came into the public eye after wi...

Indo-Aryan language native to Sri Lanka This article or section should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used. See why. (March 2021) SinhalaසිංහලSiṁhalaPronunciationIPA: [ˈsiŋɦələ]Native toSri Lan...

 

2013 American filmSound CityTheatrical release posterDirected byDave GrohlWritten byMark MonroeProduced by Dave Grohl James A. Rota John Ramsay CinematographyKenny StoffEdited byPaul CrowderProductioncompanies Therapy Content Diamond Docs Distributed by Variance Films Roswell Films Gravitas Ventures Release dates January 18, 2013 (2013-01-18) (Sundance Festival) February 1, 2013 (2013-02-01) (Cinemas and videoon demand) Running time107 minutes[1]&...

 

1997 martial arts fantasy film Mortal Kombat AnnihilationTheatrical release posterDirected byJohn R. LeonettiScreenplay by Brent V. Friedman Bryce Zabel Story by Lawrence Kasanoff Joshua Wexler John Tobias Based onMortal Kombatby Ed BoonJohn TobiasProduced byLawrence KasanoffStarring Robin Shou Talisa Soto Brian Thompson Sandra Hess Lynn Red Williams Irina Pantaeva James Remar CinematographyMatthew F. LeonettiEdited byPeck PriorMusic byGeorge S. ClintonProductioncompanies New Line Cinema[...

يو بي-13 الجنسية  ألمانيا النازية الشركة الصانعة إيه جي فيزر  المالك البحرية الإمبراطورية الألمانية المشغل البحرية الإمبراطورية الألمانية  المشغلون الحاليون وسيط property غير متوفر. المشغلون السابقون وسيط property غير متوفر. التكلفة وسيط property غير متوفر. منظومة التعاريف ال...

 

Slesse Mountain in British Columbia, Canada, consists of Chilliwack batholith rocks The Chilliwack Batholith is a large batholith that forms much of the North Cascades in southwestern British Columbia, Canada and the U.S. state of Washington. The geological structure is named after the Chilliwack River Valley, where it outcrops in many places. It does not outcrop anywhere near the City of Chilliwack. The Chilliwack Batholith is part of the Pemberton Volcanic Belt and is the largest mass of ex...

 

Branch of the Muslim League in Punjab, Pakistan Punjab Muslim League PresidentMuhammad Ali JinnahHistorical LeadersSir Mian Muhammad ShafiSir Muhammad IqbalMalik Barkat AliFounded1907 (1907)Dissolved1947 (1947)HeadquartersLahore, Punjab, British RajIdeologyTwo Nation TheoryNational affiliationAll-India Muslim League When the All-India Muslim League was founded at Dacca, on 30 December 1906 at the occasion of the annual All India Muhammadan Educational Conference, It was participated...

此條目的语调或风格可能不適合百科全書的寫作方式。 (2011年7月10日)請根據指南協助改善这篇条目,請在讨论页討論問題所在及加以改善。 此條目没有列出任何参考或来源。 (2011年11月14日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 梅花拳中國古老拳術,最早見於明朝雲南及四川南部之少数民...

 

2011 action-adventure video game 2011 video gameInfamous 2Developer(s)Sucker Punch ProductionsPublisher(s)Sony Computer EntertainmentDirector(s)Nate FoxComposer(s)James DooleyBrain & MelissaGalacticJonathan MayerSeriesInfamousPlatform(s)PlayStation 3ReleaseNA: June 7, 2011EU: June 8, 2011AU: June 9, 2011UK: June 10, 2011Genre(s)Action-adventureMode(s)Single-player Infamous 2 is an action-adventure video game developed by Sucker Punch Productions and published by Sony Computer Entertainmen...

 

Kościół św. Leonarda A-154 z 06.11.1969 i A-1319/M z dnia 15.01.2013[1] z dnia 06.11.1969 kościół filialny Drewniany kościół cmentarny w Lipnicy Dolnej Państwo  Polska Województwo  małopolskie Miejscowość Lipnica Dolna[2] Wyznanie katolickie Kościół rzymskokatolicki Parafia św. Andrzeja Apostoła w Lipnicy Murowanej Wezwanie św. Leonarda Historia Data zakończenia budowy koniec XV wieku Dane świątyni Styl gotycki Świątynia• materiał bud. • drewno Liczba ...

1941 film by Archie Mayo The Great American BroadcastAlice Faye, John Payne and Jack OakieDirected byArchie MayoWritten byDon Ettlinger Erwin Blum Robert Ellis Helen Logan Samuel HoffensteinProduced byDarryl F. ZanuckStarringAlice FayeJohn PayneJack OakieCinematographyJ. Peverell Marley Leon ShamroyEdited byRobert L. SimpsonMusic byCyril J. MockridgeDistributed by20th Century FoxRelease dateMay 9, 1941Running time90 min.CountryUnited StatesLanguageEnglish The Great American Broadcast is a 194...

 

2 Tawarikh 27Kitab Tawarikh (Kitab 1 & 2 Tawarikh) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 TawarikhKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen14← pasal 26 pasal 28 → 2 Tawarikh 27 (atau II Tawarikh 27, disingkat 2Taw 27) adalah pasal kedua puluh tujuh Kitab 2 Tawarikh dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk dalam bagian Ketuvim (כְּתוּבִים, tulisan).[1] ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!