All Things Are Possible (political party)

All Things Are Possible
LeaderAllan Pillay

All Things Are Possible is a minor political party in South Africa.

The party is focused on crime and justice, and is calling for a return of the Death penalty.[1]

Party leader Allan Pillay stated that none of the top executives in the party own property, and that he had sold his house in order to fund the campaign.[2]

The party contested the 2019 South African general election at provincial level in the Western Cape only, failing to win a seat.

Election results

Provincial elections

Election[3] Eastern Cape Free State Gauteng Kwazulu-Natal Limpopo Mpumalanga North-West Northern Cape Western Cape
% Seats % Seats % Seats % Seats % Seats % Seats % Seats % Seats % Seats
2019 - - - - - - - - - - - - - - - - 0.03% 0/42

References

  1. ^ "#Elections2019: Death penalty back on agenda".
  2. ^ "Small political party focus – All things are possible". 702. Retrieved 8 April 2019.
  3. ^ "Results Dashboard". www.elections.org.za. Retrieved 11 May 2019.


Read other articles:

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Tan Go Wat – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sudah memiliki daftar refe...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Promoting Equality in African Schools – news · newspapers · books · scholar · JSTOR (February 2011) (Learn how and when to remove this template message) ...

 

 

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2013-08)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Torymus notatus SystematikDomänEukaryoterEukaryotaRikeDjurAnimaliaStamLeddjurArthropodaUnderstamSexfotingarHexapodaKlassEgentliga insekterInsectaOrdningSteklarHymenopteraÖverfamiljGlanssteklarChalcidoideaFamiljGa...

У Вікіпедії є статті про інші значення цього терміна: Вуж (значення). ?Вуж бронзовий Олівера Охоронний статус Найменший ризик (МСОП 3.1) Біологічна класифікація Домен: Ядерні (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Підтип: Черепні (Craniata) Інфратип: Хребетні (Vertebrata) ...

 

 

Janské Lázně Janské Lázně (Tschechien) Basisdaten Staat: Tschechien Tschechien Region: Královéhradecký kraj Bezirk: Trutnov Fläche: 1373 ha Geographische Lage: 50° 38′ N, 15° 47′ O50.6316215.7824519Koordinaten: 50° 37′ 54″ N, 15° 46′ 57″ O Höhe: 519 m n.m. Einwohner: 708 (1. Jan. 2023)[1] Postleitzahl: 542 25 Struktur Status: Stadt Ortsteile: 2 Verwaltung Bürgermeister: Václav Němec (Stand: ...

 

 

Q es un personaje ficticio en los filmes y las novelas de James Bond. Q (inicial de «Quartermaster», es decir, intendentes A), al igual que M, más que un nombre es en realidad un título de trabajo. Q es la cabeza de Q Branch, una división de investigación y desarrollo del Servicio Secreto Británico. El personaje tiene una presencia muy fugaz en las novelas de Ian Fleming, mientras que en la serie fílmica tiene más importancia. También es mencionado en las novelas de John Gardner y R...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Emil G.Hampp – berita · surat kabar · buku · cendekiawan · JSTOR artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda....

 

 

Overview of conservatism in the United Kingdom This article is part of a series onConservatismin the United Kingdom Ideologies British nationalism Cameronism Muscular liberalism Civic Compassionate Green Neo One-nation Powellism Progressive Liberal Thatcherism Toryism High Red Social Ultra Principles British unionism Classical liberalism Elitism Aristocracy Meritocracy Noblesse oblige Family values Imperialism Loyalism Monarchism Moral absolutism Protectionism Royalism Social market economy S...

 

 

LogoPräsidialamt der Ukraine Das Präsidialamt der Ukraine Daten Ort Kiew, Ukraine Ukraine Architekt Serhij Hryhor'jew Baustil Klassizismus und Ukrainischer Barock Baujahr 1936–1939 Koordinaten 50° 26′ 40,3″ N, 30° 31′ 44,3″ O50.44452777777830.528972222222Koordinaten: 50° 26′ 40,3″ N, 30° 31′ 44,3″ O Besonderheiten Baudenkmal, Regierungsgebäude Blick in die Bankowa-Straße mit dem Haus mit den Chimären li...

2000 biopic about the Three Stooges The Three StoogesThe Three Stooges posterBased onFrom Amalgamated Morons to American Icons: The Three Stooges by Michael FlemingWritten byJanet RoachKirk EllisStory byJanet RoachDirected byJames FrawleyStarringPaul Ben-VictorEvan HandlerJohn KassirMichael ChiklisTheme music composerPatrick WilliamsCountry of originUnited StatesOriginal languageEnglishProductionProducersJim Lemley, Mel GibsonCinematographyRobert DraperEditorScott VickreyRunning time88 minute...

 

 

село Олексіївка Країна  Україна Область Одеська область Район  Білгород-Дністровський район Громада Маразліївська сільська громада Код КАТОТТГ UA51040110060084140 Основні дані Засноване 1824 Населення 1695 Площа 0,54 км² Густота населення 3138,89 осіб/км² Поштовий індекс 67761 ...

 

 

Brazilian tennis player In this Portuguese name, the first or maternal family name is Pinheiro and the second or paternal family name is Davi de Melo. Marcelo MeloMelo at the 2023 Monte-Carlo MastersCountry (sports) BrazilResidenceBelo Horizonte, BrazilBorn (1983-09-23) September 23, 1983 (age 40)Belo Horizonte, BrazilHeight2.03 m (6 ft 8 in)Turned pro1998PlaysRight-handed (two-handed backhand)CoachDaniel MeloPrize moneyUS$8,007,316SinglesCareer rec...

ГородВесьегонск Герб 58°39′ с. ш. 37°16′ в. д.HGЯO Страна  Россия Субъект Федерации Тверская область Муниципальный округ Весьегонский Глава Пашуков Александр Владимирович История и география Основан 1564 Первое упоминание 1564 Город с 1776 года Высота центра 108 м Ч...

 

 

Esqui cross-country O esqui cross-country dos Jogos Olímpicos de Inverno de 1948 consistiu de três eventos para homens: 18 km, 50 km e revezamento 4x10km. A prova de 18 km foi disputada em um sábado, 31 de janeiro, o revezamento em uma terça-feira, 3 de fevereiro e os 50 km fechou o programa da modalidade na sexta-feira de 6 de fevereiro de 1948. A Suécia dominou a modalidade conquistando as três medalhas de ouro possíveis, mais duas pratas e um bronze. Medalhistas ...

 

 

Canadian educator and activist John WillinskyFRSCJohn WillinskyBornToronto, Ontario, CanadaNationalityCanadianKnown forEducation technology, Open Access, academic scholarshipScientific careerFieldsEducationInstitutionsStanford University, Simon Fraser University, University of British Columbia, University of Calgary John Willinsky FRSC (born 1950) is a Canadian educator, activist, and author. Willinsky is currently on the faculty of the Stanford Graduate School of Education where he is t...

María PedrazaLahir26 Januari 1996 (umur 27)Madrid, SpanyolKebangsaanSpanyolPekerjaan Aktris Balerina Model PasanganJaime Lorente (2018–sekarang) María Pedraza (lahir pada 26 Januari 1996) adalah aktris dan balerina Spanyol yang terkenal atas perannya dalam memerankan karakter Alison Parker dalam serial Money Heist. Selain itu ia juga membintangi serial Netflix lainnya seperti Élite (sebagai Marina Nunier Osuna) dan Toy Boy (sebagai Triana).[1][2] Karier Karier María...

 

 

Unofficial national motto of South Korea You can help expand this article with text translated from the corresponding article in Korean. (September 2015) Click [show] for important translation instructions. View a machine-translated version of the Korean article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting mach...

 

 

AwardCommandant General's MedalTypeMilitary marksmanship medalAwarded forChampion shot of the annual SADF Shooting ChampionshipsCountry South AfricaPresented bythe Commandant General and, from 1965, the State PresidentEligibilityAll RanksStatusDiscontinued in 1975Established1965First awarded1962Last awarded1975Total14Ribbon bar SADF pre-1994 & SANDF post-2002 orders of wearNext (higher)SADF precedence: Queen's Medal for Champion Shots in the Military Forces SANDF precedence: Que...

Filmmaking in Iraq This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cinema of Iraq – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this template message) The cinema of Iraq went through a downturn under Saddam Hussein's regime. The development of film and film-going in Iraq reflects the d...

 

 

Pythagorean number redirects here. For the field invariant related to sums of squares, see Pythagoras number. For elements of extension fields containing square roots of sums of squares, see Pythagorean field. The Pythagorean prime 5 and its square root are both hypotenuses of right triangles with integer legs. The formulas show how to transform any right triangle with integer legs into another right triangle with integer legs whose hypotenuse is the square of the first triangle's hypote...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!