Abrupt climate change

Clathrate hydrates have been identified as a possible agent for abrupt changes.

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing,[1] though it may include sudden forcing events such as meteorite impacts.[2] Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse,[3] Younger Dryas,[4] Dansgaard–Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum.[5] The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime. Such a sudden climate change can be the result of feedback loops within the climate system[6] or tipping points in the climate system.

Scientists may use different timescales when speaking of abrupt events. For example, the duration of the onset of the Paleocene–Eocene Thermal Maximum may have been anywhere between a few decades and several thousand years. In comparison, climate models predict that under ongoing greenhouse gas emissions, the Earth's near surface temperature could depart from the usual range of variability in the last 150 years as early as 2047.[7]

Definitions

Abrupt climate change can be defined in terms of physics or in terms of impacts: "In terms of physics, it is a transition of the climate system into a different mode on a time scale that is faster than the responsible forcing. In terms of impacts, an abrupt change is one that takes place so rapidly and unexpectedly that human or natural systems have difficulty adapting to it. These definitions are complementary: the former gives some insight into how abrupt climate change comes about; the latter explains why there is so much research devoted to it."[8]

Timescales

Timescales of events described as abrupt may vary dramatically. Changes recorded in the climate of Greenland at the end of the Younger Dryas, as measured by ice-cores, imply a sudden warming of +10 °C (+18 °F) within a timescale of a few years.[9] Other abrupt changes are the +4 °C (+7.2 °F) on Greenland 11,270 years ago[10] or the abrupt +6 °C (11 °F) warming 22,000 years ago on Antarctica.[11]

By contrast, the Paleocene–Eocene Thermal Maximum may have initiated anywhere between a few decades and several thousand years. Finally, Earth System's models project that under ongoing greenhouse gas emissions as early as 2047, the Earth's near surface temperature could depart from the range of variability in the last 150 years.[7]

Past events

The Younger Dryas period of abrupt climate change is named after the alpine flower, Dryas.

Several periods of abrupt climate change have been identified in the paleoclimatic record. Notable examples include:

  • About 25 climate shifts, called Dansgaard–Oeschger cycles, which have been identified in the ice core record during the glacial period over the past 100,000 years.[12]
  • The Younger Dryas event, notably its sudden end. It is the most recent of the Dansgaard–Oeschger cycles and began 12,900 years ago and moved back into a warm-and-wet climate regime about 11,600 years ago.[citation needed] It has been suggested that "the extreme rapidity of these changes in a variable that directly represents regional climate implies that the events at the end of the last glaciation may have been responses to some kind of threshold or trigger in the North Atlantic climate system."[13] A model for this event based on disruption to the thermohaline circulation has been supported by other studies.[14]
  • The Paleocene–Eocene Thermal Maximum, timed at 55 million years ago, which may have been caused by the release of methane clathrates,[15] although potential alternative mechanisms have been identified.[16] This was associated with rapid ocean acidification[17]
  • The Permian–Triassic Extinction Event, in which up to 95% of all species became extinct, has been hypothesized to be related to a rapid change in global climate.[18][19] Life on land took 30 million years to recover.[20]
  • The Carboniferous Rainforest Collapse occurred 300 million years ago, at which time tropical rainforests were devastated by climate change. The cooler, drier climate had a severe effect on the biodiversity of amphibians, the primary form of vertebrate life on land.[3]

There are also abrupt climate changes associated with the catastrophic draining of glacial lakes. One example of this is the 8.2-kiloyear event, which is associated with the draining of Glacial Lake Agassiz.[21] Another example is the Antarctic Cold Reversal, c. 14,500 years before present (BP), which is believed to have been caused by a meltwater pulse probably from either the Antarctic ice sheet[22] or the Laurentide Ice Sheet.[23] These rapid meltwater release events have been hypothesized as a cause for Dansgaard–Oeschger cycles.[24]

A five-year study led by the Oxford School of Archaeology and additionally conducted by Royal Holloway, University of London, the Oxford University Museum of Natural History, and the National Oceanography Centre Southampton[25] completed in 2013 called "Response of Humans to Abrupt Environmental Transitions" and referred to as "RESET" aimed to see if the hypothesis that humans have major development shifts during or immediately after abrupt climate changes with the aid of knowledge pulled from research on the palaeoenvironmental conditions, prehistoric archaeological history, oceanography, and volcanic geology of the last 130,000 years and across continents.[26][27] It also aimed to predict possible human behavior in the event of climate change, and the timing of climate change.[28]

A 2017 study concluded that similar conditions to today's Antarctic ozone hole (atmospheric circulation and hydroclimate changes), ~17,700 years ago, when stratospheric ozone depletion contributed to abrupt accelerated Southern Hemisphere deglaciation. The event coincidentally happened with an estimated 192-year series of massive volcanic eruptions, attributed to Mount Takahe in West Antarctica.[29]

Possible precursors

Most abrupt climate shifts are likely due to sudden circulation shifts, analogous to a flood cutting a new river channel. The best-known examples are the several dozen shutdowns of the North Atlantic Ocean's Meridional Overturning Circulation during the last ice age, affecting climate worldwide.[30]

  • The current warming of the Arctic, the duration of the summer season, is considered abrupt and massive.[31]
  • Antarctic ozone depletion caused significant atmospheric circulation changes.[31]
  • There have also been two occasions when the Atlantic's Meridional Overturning Circulation lost a crucial safety factor. The Greenland Sea flushing at 75 °N shut down in 1978, recovering over the next decade.[32] Then the second-largest flushing site, the Labrador Sea, shut down in 1997[33] for ten years.[34] While shutdowns overlapping in time have not been seen during the 50 years of observation, previous total shutdowns had severe worldwide climate consequences.[30]

It has been postulated that teleconnections – oceanic and atmospheric processes on different timescales – connect both hemispheres during abrupt climate change.[35]

Climate feedback effects

The dark ocean surface reflects only 6 percent of incoming solar radiation; sea ice reflects 50 to 70 percent.[36]

One source of abrupt climate change effects is a feedback process, in which a warming event causes a change that adds to further warming.[37] The same can apply to cooling. Examples of such feedback processes are:

The probability of abrupt change for some climate related feedbacks may be low.[40][41] Factors that may increase the probability of abrupt climate change include higher magnitudes of global warming, warming that occurs more rapidly and warming that is sustained over longer time periods.[41]

Tipping points in the climate system

Possible tipping elements in the climate system include regional effects of climate change, some of which had abrupt onset and may therefore be regarded as abrupt climate change.[42] Scientists have stated, "Our synthesis of present knowledge suggests that a variety of tipping elements could reach their critical point within this century under anthropogenic climate change".[42]

In climate science, a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system.[43] If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming.[44][45] Tipping behavior is found across the climate system, for example in ice sheets, mountain glaciers, circulation patterns in the ocean, in ecosystems, and the atmosphere.[45] Examples of tipping points include thawing permafrost, which will release methane, a powerful greenhouse gas, or melting ice sheets and glaciers reducing Earth's albedo, which would warm the planet faster. Thawing permafrost is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere.[46]

Volcanism

Isostatic rebound in response to glacier retreat (unloading) and increased local salinity have been attributed to increased volcanic activity at the onset of the abrupt Bølling–Allerød warming. They are associated with the interval of intense volcanic activity, hinting at an interaction between climate and volcanism: enhanced short-term melting of glaciers, possibly via albedo changes from particle fallout on glacier surfaces.[47]

Impacts

A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, and red paths represent surface currents.
The Permian–Triassic extinction event, labelled "P–Tr" here, is the most significant extinction event in this plot for marine genera.

In the past, abrupt climate change has likely caused wide-ranging and severe impacts as follows:

See also

References

  1. ^ Harunur Rashid; Leonid Polyak; Ellen Mosley-Thompson (2011). Abrupt climate change: mechanisms, patterns, and impacts. American Geophysical Union. ISBN 9780875904849.
  2. ^ Committee on Abrupt Climate Change, National Research Council. (2002). "Definition of Abrupt Climate Change". Abrupt climate change : inevitable surprises. Washington, D.C.: National Academy Press. doi:10.17226/10136. ISBN 978-0-309-07434-6.
  3. ^ a b c Sahney, S.; Benton, M.J.; Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica". Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1.
  4. ^ Broecker, W. S. (May 2006). "Geology. Was the Younger Dryas triggered by a flood?". Science. 312 (5777): 1146–1148. doi:10.1126/science.1123253. ISSN 0036-8075. PMID 16728622. S2CID 39544213.
  5. ^ National Research Council (2002). Abrupt climate change : inevitable surprises. Washington, D.C.: National Academy Press. p. 108. ISBN 0-309-07434-7.
  6. ^ Rial, J. A.; Pielke Sr., R. A.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; De Noblet-Ducoudré, N.; Prinn, R.; Reynolds, J. F.; Salas, J. D. (2004). "Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System" (PDF). Climatic Change. 65: 11–00. doi:10.1023/B:CLIM.0000037493.89489.3f. hdl:11858/00-001M-0000-0013-A8E8-0. S2CID 14173232. Archived from the original (PDF) on 9 March 2013.
  7. ^ a b Mora, C (2013). "The projected timing of climate departure from recent variability". Nature. 502 (7470): 183–187. Bibcode:2013Natur.502..183M. doi:10.1038/nature12540. PMID 24108050. S2CID 4471413.
  8. ^ "1: What defines "abrupt" climate change?". LAMONT-DOHERTY EARTH OBSERVATORY. Retrieved 8 July 2021.
  9. ^ Grachev, A.M.; Severinghaus, J.P. (2005). "A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants". Quaternary Science Reviews. 24 (5–6): 513–9. Bibcode:2005QSRv...24..513G. doi:10.1016/j.quascirev.2004.10.016.
  10. ^ Kobashi, T.; Severinghaus, J.P.; Barnola, J. (30 April 2008). "4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice". Earth and Planetary Science Letters. 268 (3–4): 397–407. Bibcode:2008E&PSL.268..397K. doi:10.1016/j.epsl.2008.01.032.
  11. ^ Taylor, K.C.; White, J; Severinghaus, J; Brook, E; Mayewski, P; Alley, R; Steig, E; Spencer, M; Meyerson, E; Meese, D; Lamorey, G; Grachev, A; Gow, A; Barnett, B (January 2004). "Abrupt climate change around 22 ka on the Siple Coast of Antarctica". Quaternary Science Reviews. 23 (1–2): 7–15. Bibcode:2004QSRv...23....7T. doi:10.1016/j.quascirev.2003.09.004.
  12. ^ "Heinrich and Dansgaard–Oeschger Events". National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). NOAA. Archived from the original on 22 December 2016. Retrieved 7 August 2019.
  13. ^ Alley, R. B.; Meese, D. A.; Shuman, C. A.; Gow, A. J.; Taylor, K. C.; Grootes, P. M.; White, J. W. C.; Ram, M.; Waddington, E. D.; Mayewski, P. A.; Zielinski, G. A. (1993). "Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event" (PDF). Nature. 362 (6420): 527–529. Bibcode:1993Natur.362..527A. doi:10.1038/362527a0. hdl:11603/24307. S2CID 4325976. Archived from the original (PDF) on 17 June 2010.
  14. ^ a b Manabe, S.; Stouffer, R. J. (1995). "Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean" (PDF). Nature. 378 (6553): 165. Bibcode:1995Natur.378..165M. doi:10.1038/378165a0. S2CID 4302999.
  15. ^ Farley, K. A.; Eltgroth, S. F. (2003). "An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He". Earth and Planetary Science Letters. 208 (3–4): 135–148. Bibcode:2003E&PSL.208..135F. doi:10.1016/S0012-821X(03)00017-7.
  16. ^ Pagani, M.; Caldeira, K.; Archer, D.; Zachos, C. (December 2006). "Atmosphere. An ancient carbon mystery". Science. 314 (5805): 1556–1557. doi:10.1126/science.1136110. ISSN 0036-8075. PMID 17158314. S2CID 128375931.
  17. ^ Zachos, J. C.; Röhl, U.; Schellenberg, S. A.; Sluijs, A.; Hodell, D. A.; Kelly, D. C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L. J.; McCarren, H.; Kroon, D. (June 2005). "Rapid acidification of the ocean during the Paleocene–Eocene thermal maximum". Science. 308 (5728): 1611–1615. Bibcode:2005Sci...308.1611Z. doi:10.1126/science.1109004. hdl:1874/385806. PMID 15947184. S2CID 26909706.
  18. ^ Benton, M. J.; Twitchet, R. J. (2003). "How to kill (almost) all life: the end-Permian extinction event" (PDF). Trends in Ecology & Evolution. 18 (7): 358–365. doi:10.1016/S0169-5347(03)00093-4. Archived from the original (PDF) on 18 April 2007.
  19. ^ a b Crowley, T. J.; North, G. R. (May 1988). "Abrupt Climate Change and Extinction Events in Earth History". Science. 240 (4855): 996–1002. Bibcode:1988Sci...240..996C. doi:10.1126/science.240.4855.996. PMID 17731712. S2CID 44921662.
  20. ^ a b Sahney, S.; Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  21. ^ Alley, R. B.; Mayewski, P. A.; Sowers, T.; Stuiver, M.; Taylor, K. C.; Clark, P. U. (1997). "Holocene climatic instability: A prominent, widespread event 8200 yr ago". Geology. 25 (6): 483. Bibcode:1997Geo....25..483A. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2.
  22. ^ Weber; Clark; Kuhn; Timmermann (5 June 2014). "Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation". Nature. 510 (7503): 134–138. Bibcode:2014Natur.510..134W. doi:10.1038/nature13397. PMID 24870232. S2CID 205238911.
  23. ^ Gregoire, Lauren (11 July 2012). "Deglacial rapid sea level rises caused by ice-sheet saddle collapses" (PDF). Nature. 487 (7406): 219–222. Bibcode:2012Natur.487..219G. doi:10.1038/nature11257. PMID 22785319. S2CID 4403135.
  24. ^ Bond, G.C.; Showers, W.; Elliot, M.; Evans, M.; Lotti, R.; Hajdas, I.; Bonani, G.; Johnson, S. (1999). "The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age" (PDF). In Clark, P.U.; Webb, R.S.; Keigwin, L.D. (eds.). Mechanisms of Global Change at Millennial Time Scales. Geophysical Monograph. American Geophysical Union, Washington DC. pp. 59–76. ISBN 0-87590-033-X. Archived from the original (PDF) on 29 October 2008.
  25. ^ "Research wins environmental grant". Newsquest. Oxford Mail. 23 July 2007.
  26. ^ "RESET: RESponse of humans to abrupt Environmental Transitions". gtr.ukri.org. UK Research and Innovation.
  27. ^ "RESET". Oxford University.
  28. ^ "RESET - Response of Humans to Abrupt Environmental Transitions - School of Archaeology - University of Oxford". projects.arch.ox.ac.uk. Oxford School of Archaeology.
  29. ^ McConnell; et al. (2017). "Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion". Proceedings of the National Academy of Sciences. 114 (38). PNAS: 10035–10040. Bibcode:2017PNAS..11410035M. doi:10.1073/pnas.1705595114. PMC 5617275. PMID 28874529.
  30. ^ a b Alley, R. B.; Marotzke, J.; Nordhaus, W. D.; Overpeck, J. T.; Peteet, D. M.; Pielke Jr, R. A.; Pierrehumbert, R. T.; Rhines, P. B.; Stocker, T. F.; Talley, L. D.; Wallace, J. M. (March 2003). "Abrupt Climate Change" (PDF). Science. 299 (5615): 2005–2010. Bibcode:2003Sci...299.2005A. doi:10.1126/science.1081056. PMID 12663908. S2CID 19455675.
  31. ^ a b Mayewski, Paul Andrew (2016). "Abrupt climate change: Past, present and the search for precursors as an aid to predicting events in the future (Hans Oeschger Medal Lecture)". EGU General Assembly Conference Abstracts. 18: EPSC2016-2567. Bibcode:2016EGUGA..18.2567M.
  32. ^ Schlosser P, Bönisch G, Rhein M, Bayer R (1991). "Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data". Science. 251 (4997): 1054–1056. Bibcode:1991Sci...251.1054S. doi:10.1126/science.251.4997.1054. PMID 17802088. S2CID 21374638.
  33. ^ Rhines, P. B. (2006). "Sub-Arctic oceans and global climate". Weather. 61 (4): 109–118. Bibcode:2006Wthr...61..109R. doi:10.1256/wea.223.05.
  34. ^ Våge, K.; Pickart, R. S.; Thierry, V.; Reverdin, G.; Lee, C. M.; Petrie, B.; Agnew, T. A.; Wong, A.; Ribergaard, M. H. (2008). "Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008". Nature Geoscience. 2 (1): 67. Bibcode:2009NatGe...2...67V. doi:10.1038/ngeo382. hdl:1912/2840.
  35. ^ Markle; et al. (2016). "Global atmospheric teleconnections during Dansgaard–Oeschger events". Nature Geoscience. 10. Nature: 36–40. doi:10.1038/ngeo2848.
  36. ^ "Thermodynamics: Albedo". NSIDC.
  37. ^ Lenton, Timothy M.; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim (27 November 2019). "Climate tipping points – too risky to bet against". Nature. 575 (7784): 592–595. Bibcode:2019Natur.575..592L. doi:10.1038/d41586-019-03595-0. hdl:10871/40141. PMID 31776487.
  38. ^ Comiso, J. C. (2002). "A rapidly declining perennial sea ice cover in the Arctic". Geophysical Research Letters. 29 (20): 17-1 – 17-4. Bibcode:2002GeoRL..29.1956C. doi:10.1029/2002GL015650.
  39. ^ Malhi, Y.; Aragao, L. E. O. C.; Galbraith, D.; Huntingford, C.; Fisher, R.; Zelazowski, P.; Sitch, S.; McSweeney, C.; Meir, P. (February 2009). "Special Feature: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest" (PDF). PNAS. 106 (49): 20610–20615. Bibcode:2009PNAS..10620610M. doi:10.1073/pnas.0804619106. ISSN 0027-8424. PMC 2791614. PMID 19218454.
  40. ^ Clark, P.U.; et al. (December 2008). "Executive Summary". Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Reston, Virginia: U.S. Geological Survey. pp. 1–7.
  41. ^ a b IPCC. "Summary for Policymakers". Sec. 2.6. The Potential for Large-Scale and Possibly Irreversible Impacts Poses Risks that have yet to be Reliably Quantified. Archived from the original on 24 September 2015. Retrieved 10 May 2018.
  42. ^ a b Lenton, T. M.; Held, H.; Kriegler, E.; Hall, J. W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H. J. (2008). "Inaugural Article: Tipping elements in the Earth's climate system". Proceedings of the National Academy of Sciences. 105 (6): 1786–1793. Bibcode:2008PNAS..105.1786L. doi:10.1073/pnas.0705414105. PMC 2538841. PMID 18258748.
  43. ^ Lenton, Tim; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim (2019). "Climate tipping points – too risky to bet against". Nature. 575 (7784): 592–595. Bibcode:2019Natur.575..592L. doi:10.1038/d41586-019-03595-0. PMID 31776487.
  44. ^ "Climate change driving entire planet to dangerous "global tipping point"". National Geographic. 27 November 2019. Archived from the original on 19 February 2021. Retrieved 17 July 2022.
  45. ^ a b Lenton, Tim (2021). "Tipping points in the climate system". Weather. 76 (10): 325–326. Bibcode:2021Wthr...76..325L. doi:10.1002/wea.4058. ISSN 0043-1656. S2CID 238651749.
  46. ^ "The irreversible emissions of a permafrost "tipping point"". World Economic Forum. 18 February 2020. Retrieved 17 July 2022.
  47. ^ Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn; Wolhowe, Matthew; Addison, Jason; Prahl, Fredrick (October 2016). "Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation". Earth and Planetary Science Letters. 452: 79–89. Bibcode:2016E&PSL.452...79P. doi:10.1016/j.epsl.2016.07.033.
  48. ^ Sahney, S.; Benton, M.J.; Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC 2936204. PMID 20106856.
  49. ^ Trenberth, K. E.; Hoar, T. J. (1997). "El Niño and climate change". Geophysical Research Letters. 24 (23): 3057–3060. Bibcode:1997GeoRL..24.3057T. doi:10.1029/97GL03092.
  50. ^ Meehl, G. A.; Washington, W. M. (1996). "El Niño-like climate change in a model with increased atmospheric CO2 concentrations". Nature. 382 (6586): 56–60. Bibcode:1996Natur.382...56M. doi:10.1038/382056a0. S2CID 4234225.
  51. ^ Broecker, W. S. (1997). "Thermohaline Circulation, the Achilles Heel of Our Climate System: Will Man-Made CO2 Upset the Current Balance?" (PDF). Science. 278 (5343): 1582–1588. Bibcode:1997Sci...278.1582B. doi:10.1126/science.278.5343.1582. PMID 9374450. Archived from the original (PDF) on 22 November 2009.
  52. ^ Beniston, M.; Jungo, P. (2002). "Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation" (PDF). Theoretical and Applied Climatology. 71 (1–2): 29–42. Bibcode:2002ThApC..71...29B. doi:10.1007/s704-002-8206-7. S2CID 14659582.
  53. ^ J. Hansen; M. Sato; P. Hearty; R. Ruedy; et al. (2015). "Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous". Atmospheric Chemistry and Physics Discussions. 15 (14): 20059–20179. Bibcode:2015ACPD...1520059H. doi:10.5194/acpd-15-20059-2015. Our results at least imply that strong cooling in the North Atlantic from AMOC shutdown does create higher wind speed. * * * The increment in seasonal mean wind speed of the northeasterlies relative to preindustrial conditions is as much as 10–20%. Such a percentage increase of wind speed in a storm translates into an increase of storm power dissipation by a factor ~1.4–2, because wind power dissipation is proportional to the cube of wind speed. However, our simulated changes refer to seasonal mean winds averaged over large grid-boxes, not individual storms.* * * Many of the most memorable and devastating storms in eastern North America and western Europe, popularly known as superstorms, have been winter cyclonic storms, though sometimes occurring in late fall or early spring, that generate near-hurricane-force winds and often large amounts of snowfall. Continued warming of low latitude oceans in coming decades will provide more water vapor to strengthen such storms. If this tropical warming is combined with a cooler North Atlantic Ocean from AMOC slowdown and an increase in midlatitude eddy energy, we can anticipate more severe baroclinic storms.

Read other articles:

خليط من دعوات الزفاف الصينية والغربية دعوة الزفاف (بالإنجليزية: Wedding invitation)‏ هي رسالة تطلب من المُتلقي حضور حفل زفاف. وهي مَكتوبة عادةً بلُغة شخص ثالث رسمي، وتُرسَل بالبريد أو إلى المدعو شخصياً قبل موعد الزفاف بأسبوع إلى 8 أسابيع. التاريخ العصور الوسطى وما قبلها قبل اختراع ...

 

اضغط هنا للاطلاع على كيفية قراءة التصنيف البدوال المرتبة التصنيفية نوع[1]  التصنيف العلمي النطاق: حقيقيات النوى المملكة: نباتات الفرقة العليا: النباتات الجنينية القسم: النباتات الوعائية الشعبة: حقيقيات الأوراق الشعيبة: البذريات العمارة: كاسيات البذور الطائفة: ثنائيا

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) ريتش بوي معلومات شخصية اسم الولادة (بالإنجليزية: Maurice Richards)‏  الميلاد 2 سبتمبر 1983 (40 سنة)  موبيل، ألاباما  مواطنة الولايات المتحدة  الحياة العملية الم

Series of wars waged in Europe (c. 1522–1697) The Battle of White Mountain (1620) in Bohemia was one of the decisive battles of the Thirty Years' War that ultimately led to the reconversion of Bohemia back to Catholicism. The European wars of religion were a series of wars waged in Europe during the 16th, 17th and early 18th centuries.[1][2] Fought after the Protestant Reformation began in 1517, the wars disrupted the religious and political order in the Catholic countries o...

 

Georg Franz Hoffmann Georg Franz Hoffmann (* 13. Januar 1760 in Marktbreit; † 17. März 1826 in Moskau) war ein deutscher Botaniker, Lichenologe und Bryologe. Sein offizielles botanisches Autorenkürzel lautet „Hoffm.“ Inhaltsverzeichnis 1 Leben und Wirken 2 Mitgliedschaften und Ehrungen 3 Schriften (Auswahl) 4 Literatur 5 Weblinks 6 Einzelnachweise Leben und Wirken Hoffmann studierte ab 1779 Medizin zunächst in Herborn und ab 1780 in Erlangen, wo er 1786 zum Dr. med. promoviert wurde....

 

Royal palace in Seville, Spain See also: Alcazar (disambiguation) Alcázar of SevilleNative name Spanish: Real Alcázar de SevillaPatio de la Montería courtyardTypeAlcázarLocationSeville, SpainCoordinates37°23′02″N 5°59′29″W / 37.38389°N 5.99139°W / 37.38389; -5.99139 UNESCO World Heritage SiteTypeCulturalCriteriai, ii, iii, viDesignated1987 (11th session)Part ofCathedral, Alcázar and General Archive of the Indies in SevilleReference no.383-002Regio...

Ferry-Dusika-HallenstadionLocationVienna, AustriaCoordinates48°12′39″N 16°25′25″E / 48.21083°N 16.42361°E / 48.21083; 16.42361OwnerCity of ViennaOperatorWiener Stadthalle Betriebs- und Veranstaltungsgesellschaft m.b.H.Capacity5.365 to 7.700ConstructionOpened1976Renovated1999Closed2021Demolished2022 The Ferry-Dusika-Hallenstadion was an indoor arena in Vienna, Austria. It was built in 1976, held 7,700 spectators and hosted indoor sporting events such as trac...

 

Tiếng KapampanganTiếng PampanganAmánung Kapampangan, Amánung SísuanAmánung Sísuanviết bằng chữ KulitanPhát âm[kapamˈpaŋan]Sử dụng tạiPhilippines (Trung Luzon)Khu vựcPampanga, Nam Tarlac, đông bắc Bataan, tây Bulacan, tây nam Nueva Ecija và đông nam ZambalesTổng số người nói1,9 triệu (thống kê 1990)[1]Bản ngữ phổ biến thứ 7 tại Philippines[2]Dân tộcNgười KapampanganPhân loạiNam ĐảoMalay-PolynesiaPhilippine...

 

Autobiography of tennis player Unstoppable. My Life So Far First editionAuthorMaria SharapovaCountryUnited StatesLanguageEnglishGenreAutobiographyPublisherSarah Crichton BooksPublication dateSeptember 12, 2017Pages304ISBN9780374715311OCLC1242984600Unstoppable. My Life So Far is a memoir written by professional tennis player Maria Sharapova and published on September 12, 2017.[1] Summary Maria Sharapova is a famous Russian tennis player, a five-time winner of Grand Slam tournaments. Sh...

ThoothukudiKota di Tamil Nadu Clockwise from the topThoothukudi Thermal Power Station, Thoothukudi Airport, Pearl Oyster of Pearl City, Our Lady Of Snows Church, Tiruchendur Murugan temple, Salt Pans in Thoothukudi and V. O. Chidambaranar Port TrustJulukan: Pearl City, Salt Capital of Tamil Nadu and Sea Gateway of Tamil Nadu.Lua error in Modul:Location_map at line 539: Tidak dapat menemukan definisi peta lokasi yang ditentukan. Baik "Modul:Location map/data/India3" maupun "...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Haul Guru Sekumpul – berita · surat kabar · buku · cendekiawan · JSTOR Haul Abah Guru SekumpulNama lain Haul Abah Guru Sekumpul Haul Sekumpul JenisIslamKegiatan Zikir nasyid Selawat Doa Kegiatan bakti sosial ...

 

Dewan Perwakilan Rakyat DaerahKabupaten GroboganDewan Perwakilan RakyatKabupaten Grobogan2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai14 Agustus 2019PimpinanKetuaAgus Siswanto, S.Sos., M.A.P. (PDI-P) sejak 20 September 2019 Wakil Ketua IIr. H. M. Nurwibowo, M.Si. (PKB) sejak 20 September 2019 Wakil Ketua IIH. Sugeng Prasetyo, S.E., M.M. (Gerindra) sejak 20 September 2019 Wakil Ketua IIIH. Mochammad Fatah, S.Pd.I. (PPP) sejak 20 September 2019 Kompos...

Mr Midnight AuthorJames LeeOriginal titleMr MidnightCountrySingaporeLanguageEnglishGenreHorror fictionPublisherAngsana Books, Flame Of The Forest Publishing (flameoftheforest.com)Publication date1998 (Earliest, Mr Midnight #1)2023 (Latest, Mr Midnight #104) Mr Midnight (US title: Mr. Midnight) is a children's horror fiction book series written by Jim Aitchison under the pseudonym of James Lee. The series is published by Angsana Books, Flame Of The Forest Publishing. There are currently 1...

 

Millwall F.C.'s first ground from 1885–1886 Glengall RoadThe Dockers[1]LocationGlengall RoadMillwallIsle of DogsLondon, EnglandCoordinates51°29′42″N 0°01′24″W / 51.4949°N 0.023197°W / 51.4949; -0.023197Capacity~2,000 (standing)Field size90 x 70 yardsSurfaceGrassConstructionBuiltSummer, 1885Opened24 October 1885Closed23 April 1886TenantsMillwall Rovers F.C. (1885–1886) Glengall Road was a football ground on the Isle of Dogs in East London. It was...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Khangri: The Mountain – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) 1996 Nepalese filmKhangri (The Mountain)Title screenDirected byNabin SubbaProduced bySunder Joshi, Ang Phurba DragthowaStarringS...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2017) (Learn how and when to remove this template message)This article needs additional citations for verification. Please help improve this article b...

 

170

此條目没有列出任何参考或来源。 (2020年5月24日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 170 ← 169 170 171 → 数表 — 整数 <<  170 171 172 173 174 175 176 177 178 179 >> <<  100 110 120 130 140 150 160 170 180 190 >>...

 

У этого термина существуют и другие значения, см. Се. Буквы со сходным начертанием: U · ሀ Буквы со сходным начертанием: u · и Армянская буква се Սս Изображение ◄ Չ Պ Ջ Ռ Ս Վ Տ Ր Ց ► ◄ չ պ ջ ռ ս վ տ ր ց ► Характеристики Название Ս: armenian capital letter sehս...

Barang-barang yang terbuat dari mutiara Majorica, sebuah versi mutiara imitasi Mutiara imitasi adalah benda buatan manusia (biasanya manik-manik) yang dirancang untuk meniru mutiara yang sebenarnya. Beragam metode dipakai untuk membuat mutiara imitasi dari bahan-bahan yang meliputi kaca, plastik dan cangkang kerang yang sebenarnya.[1] Referensi ^ Pearls. stoneplus.cst.cmich.edu. 

 

2021 Sri Lankan film ColomboකොළඹDirected byAsama LiyanageWritten byAsama LiyanageProduced byAnusha Sanjeewa EdirimuniStarringHemal Ranasinghe Dharmapriya Dias Kumara ThirimaduraCinematographyAmith KrishanthaEdited byThilanka PereraMusic byAjith KumarasiriProductioncompanyTeam Works Media Production[1]Distributed byEAP TheatersRelease date 18 March 2021 (2021-03-18) CountrySri LankaLanguageSinhala Colombo (Sinhala: කොළඹ) is a 2021 Sri Lankan action thrill...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!