26-fullerene graph

26-fullerene
The 26-fullerene graph with its hexagons highlighted
Vertices26
Edges39
Radius5
Diameter6
Girth5
Chromatic number3
Chromatic index3
Propertiesfaces = 3 hexagons,
12 pentagons
Table of graphs and parameters

In the mathematical field of graph theory, the 26-fullerene graph is a polyhedral graph with V = 26 vertices and E = 39 edges. Its planar embedding has three hexagonal faces (including the one shown as the external face of the illustration) and twelve pentagonal faces. As a planar graph with only pentagonal and hexagonal faces, meeting in three faces per vertex, this graph is a fullerene. The existence of this fullerene has been known since at least 1968.[1]

Properties

The 26-fullerene graph has prismatic symmetry, the same group of symmetries as the triangular prism. This symmetry group has 12 elements; it has six symmetries that arbitrarily permute the three hexagonal faces of the graph and preserve the orientation of its planar embedding, and another six orientation-reversing symmetries.[2]

The number of fullerenes with a given even number of vertices grows quickly in the number of vertices; 26 is the largest number of vertices for which the fullerene structure is unique. The only two smaller fullerenes are the graph of the regular dodecahedron (a fullerene with 20 vertices) and the graph of the truncated hexagonal trapezohedron (a 24-vertex fullerene),[3] which are the two types of cells in the Weaire–Phelan structure.

The 26-fullerene graph has many perfect matchings. One must remove at least five edges from the graph in order to obtain a subgraph that has exactly one perfect matching. This is a unique property of this graph among fullerenes in the sense that, for every other number of vertices of a fullerene, there exists at least one fullerene from which one can remove four edges to obtain a subgraph with a unique perfect matching.[4]

The vertices of the 26-fullerene graph can be labeled with sequences of 12 bits, in such a way that distance in the graph equals half of the Hamming distance between these bitvectors. This can also be interpreted as an isometric embedding from the graph into a 12-dimensional taxicab geometry. The 26-fullerene graph is one of only five fullerenes with such an embedding.[2]

12-bit distance labels for the 26-fullerene graph, in hexadecimal

In 2009, The New York Times published a puzzle involving Hamiltonian paths in this graph, taking advantage of the correspondence between its 26 vertices and the 26 letters of the English alphabet.[5][6]

References

  1. ^ Grünbaum, B. (1968), "Some analogues of Eberhard's theorem on convex polytopes", Israel Journal of Mathematics, 6 (4): 398–411 (1969), doi:10.1007/BF02771220, MR 0244854. See line 19 of table, p. 411, completely characterizing which numbers of hexagons are possible in a fullerene.
  2. ^ a b Marcusanu, Mihaela (2007), The classification of -embeddable fullerenes, Ph.D. thesis, Bowling Green State University, ISBN 978-1109-98335-7, MR 2710114. For the embedding, see Figure 5.3, p. 52.
  3. ^ Sloane, N. J. A. (ed.), "Sequence A007894", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  4. ^ Yang, Qin; Zhang, Heping; Lin, Yuqing (2015), "On the anti-forcing number of fullerene graphs", MATCH Communications in Mathematical and in Computer Chemistry, 74 (3): 673–692, arXiv:1503.01900, MR 3444683
  5. ^ Tierney, John (May 4, 2009), "The Hamiltonian Puzzle", The New York Times
  6. ^ Pegg, Ed Jr. (2009), "The Icosian game, revisited" (PDF), The Mathematica Journal, 11 (3): 310–314, doi:10.3888/tmj.11.3-1

Read other articles:

Private liberal arts women's college in Raleigh, North Carolina, United States Meredith CollegeFormer namesBaptist Female University (1891–1904)Baptist University for Women (1904–1909)MottoLux (Latin)Motto in EnglishLightTypePrivate women's liberal arts college and coeducational graduate schoolEstablished1891; 132 years ago (1891)Endowment$114.6 million (2020)[1][2]PresidentJo AllenAcademic staff126 (fall 2021)[3]Students1,711 (fall 2021)[...

 

 

Halaman ini berisi artikel tentang film 1987. Untuk penggunaan lain, lihat Untouchable. The UntouchablesPoster film teatrikalSutradara Brian De Palma Produser Art Linson Ditulis oleh David Mamet SkenarioDavid MametBerdasarkanThe Untouchablesoleh Oscar FraleyEliot NessPemeran Kevin Costner Charles Martin Smith Andy García Robert De Niro Sean Connery Penata musikEnnio MorriconeSinematograferStephen H. BurumPenyuntingGerald B. GreenbergBill PankowDistributorParamount PicturesTanggal rilis...

 

 

One of eighteen major Puranas Vayu PuranaInformationReligionHinduismLanguageSanskrit Part of a series onHindu scriptures and texts Shruti Smriti List Vedas Rigveda Samaveda Yajurveda Atharvaveda Divisions Samhita Brahmana Aranyaka Upanishads UpanishadsRig vedic Aitareya Kaushitaki Sama vedic Chandogya Kena Yajur vedic Brihadaranyaka Isha Taittiriya Katha Shvetashvatara Maitri Atharva vedic Mundaka Mandukya Prashna Other scriptures Bhagavad Gita Agamas Related Hindu texts Vedangas Shiksha Chan...

For other uses, see Roots and Wings (disambiguation). 1995 studio album by Vaya Con DiosRoots and WingsStudio album by Vaya Con DiosReleasedDecember 13, 1995 (1995-12-13)GenreSoft rockModern electric bluesLength47:35LabelAriola RecordsProducerPhilippe AllaertDani KleinVaya Con Dios chronology Time Flies(1992) Roots and Wings(1995) The Promise(2004) 'Roots and Wings is the fourth studio album by the Belgian one woman band Vaya Con Dios, released in 1995. Track listing No...

 

 

Andre BraugherAndre Braugher, 2011LahirAndre Braugher01 Juli 1962 (umur 61) 1 Juli 1962di Chicago, Amerika SerikatKebangsaanAmerika SerikatPekerjaanAktorTahun aktif1989 Andre Braugher (lahir 1 Juli 1962) merupakan seorang aktor berkebangsaan Amerika Serikat yang memenangkan nominasi Emmy Award. Dia dilahirkan di Chicago. Dia berkarier di dunia film sejak tahun 1989. Filmografi Glory (1989) Somebody Has To Shoot the Picture (1990) The Court-Martial of Jackie Robinson (1990) Class of ...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Belgian basketball player Julie VanlooVanloo in 2013No. 35 – GalatasarayPositionPoint guardLeagueTurkish Super LeagueEuroCup WomenPersonal informationBorn (1993-02-10) 10 February 1993 (age 30)Ostend, BelgiumNationalityBelgianListed height5 ft 8 in (1.73 m)Career informationPlaying career2003–presentCareer history2003–2009Blue Cats Ieper2009–2013Declercq Stortbeton Waregem BC2013–2015USO Mondeville2015–2016Luleå Basket2016–2017Virtus Eirene Ragusa201...

 

 

Sebuah contoh jembatan ligan μ2 Dalam kimia koordinasi, sebuah jembatan ligan adalah sebuah ligan yang menghubungkan dua atau lebih atom, biasanya ion logam.[1] Ligan dapat berupa atom atau poliatom. Hampir semua senyawa kompleks organik dapat berfungsi sebagai jembatan ligan, jadi istilah ini biasanya terbatas pada ligan kecil seperti pseudohalida atau ligan yang dirancang khusus untuk menghubungkan dua logam. Dalam penamaan suatu kompleks dengan jembatan atom tunggal yang menjembat...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Asosiasi Pakistan untuk Kemajuan Ilmu Pengetahuan (PAAS) adalah organisasi ilmiah yang berbasis di Pakistan. Berkantor pusat di Lahore, organisasi ini didirikan pada Desember 1947 setelah kemerdekaan Pakistan, dan merupakan salah satu organisasi ilmu ter...

Japanese media franchise This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: excessive plot and character details. It could also use some more English-language references. Please help improve this article if you can. (January 2019) (Learn how and when to remove this template message) This article's plot summary may be too long or excessively detailed. Please help improve it by removing unnecessary details and making it more concise. (September 2018...

 

 

كنيسة سان برنارد في الشابل تعديل مصدري - تعديل   كنيسة سان برنارد في الشابّل كنيسة سان برنارد في الشابّل هي كنيسة كاثوليكية بنيت في عهد نابليون الثالث. تقع في الدائرة الثامنة عشرة في باريس في حي كوت دور. كانت قد بنيت قبل كومونة باريس في عام 1860 وأضيف إلى اسمها كلمة «الشابل» ...

 

 

British writer Eliza Draperby John Raphael SmithBorn(1744-04-05)5 April 1744AnchuthenguDied3 August 1778(1778-08-03) (aged 34)Clifton, England Eliza Draper (5 April 1744 – 3 August 1778) is best known as Laurence Sterne's Eliza. She was his muse and is commemorated in his Sentimental Journey and Journal to Eliza. She had literary talents that were developed under Sterne's influence, and she wrote many long and interesting letters from India, vividly describing the life and customs ther...

Bengali cinema 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 2014 2015 2016 2...

 

 

Perception of image sharpness which is unrelated to actual resolution An image with artificially increased acutance Another illustration, where overshoot caused by using unsharp masking to sharpen the image (bottom half) increases acutance. In photography, acutance describes a subjective perception of sharpness that is related to the edge contrast of an image.[1][2] Acutance is related to the amplitude of the derivative of brightness with respect to space. Due to the nature of...

 

 

Untuk kegunaan lain, lihat Konawe dan Konawe. Kabupaten Konawe Wonua TebawoKabupaten BenderaLambangJulukan: Wonua TebawoPetaKabupaten KonawePetaTampilkan peta SulawesiKabupaten KonaweKabupaten Konawe (Indonesia)Tampilkan peta IndonesiaKoordinat: 3°55′02″S 122°05′18″E / 3.91717°S 122.08823°E / -3.91717; 122.08823Negara IndonesiaProvinsiSulawesi TenggaraDasar hukumUU Nomor 29 Tahun 1959Hari jadi3 Maret 1960 (umur 63)Ibu kotaUnaahaJumlah satuan ...

Train in India Hapa–Shri Mata Vaishno Devi Katra Superfast ExpressOverviewService typeSuperfastFirst service1 January 1990; 34 years ago (1990-01-01)Current operator(s)Northern Railway zoneRouteTerminiHapa (HAPA)Shri Mata Vaishno Devi Katra (SDVK)Stops29Distance travelled2,059 km (1,279 mi)Average journey time32 hrs 45 minsService frequencyWeekly[a]Train number(s)12475/12476On-board servicesClass(es)AC 2 tier, AC 3 tier, Sleeper class, General UnreservedS...

 

 

الصفحه دى يتيمه, حاول تضيفلها مقالات متعلقه لينكات فى صفحات تانيه متعلقه بيها. هدسون تايلور   معلومات شخصيه الميلاد 21 مايو 1832[1][2][3][4]  بارنسلى  الوفاة 3 يونيه 1905 (73 سنة)[1][2][3][5]  مواطنه المملكه المتحده لبريطانيا العظمى و ايرلاندا ...

 

 

جزء من سلسلة مقالات حولتاريخ إيران التاريخ الإسطوري أسرة بيشداديان كيانيون العصور القديمة ق.م إيران ماقبل التاريخ العصور القديمة–4000 حضارة كورا- أراكسيس 3400–2000 الحقبة العيلامية الأولى 3200–2700 حضارة جيروفت قرابة 3100 – قرابة 2200 عيلام 2700–539 الإمبراطورية الأكدية 2400–2150 لولوبي...

نادي الهلال السعوديموسم 1995-96الرئيس الامير خالد بن محمد آل سعودالمدير الفني ويم فان هانيغيم (أكتوبر 1995 – مايو 1996) عبدالعزيز العودة (مؤقت) جوبيرالملعبملعب الملك فهد الدوليملعب الأمير فيصل بن فهدالدوري السعودي الممتازالبطل (اللقب السابع)كأس الاتحاد السعوديالبطل (اللقب الرا...

 

 

У этого термина существуют и другие значения, см. Куньлунь (значения). Куньлунь Ред Стар Страна  Китай Город Пекин Основан 2016; 8 лет назад (2016) Прозвища Драконы Домашняя арена Арена Мытищи (на 7700) Цвета                Хоккейная ли...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!