Die sgRNA bildet eine Sekundärstruktur, die als R-loop bezeichnet wird.[1] Sie kann in Bakterien,[2][3][4]Hefen,[5]Fruchtfliegen,[6]Zebrafischen[7], Mäusen[8] und Menschen[9] verwendet werden. Daraufhin wird sie von Cas-Proteinen des Typs I und II gebunden.[1] Natürlicherweise bindet Cas9 zwei RNA, die crRNA und die tracrRNA, während bei der Methode nur eine aus Sequenzen der beiden RNA bestehende sgRNA verwendet wird.[10] Dadurch muss für die CRISPR/Cas-Methode nur eine DNA synthetisiert werden, die als Template der sgRNA dient. Eine sgRNA besteht aus den 20 Nukleotiden strangaufwärts (in 5'-Richtung) von einem Protospacer Adjacent Motif (PAM) der zu schneidenden Ziel-DNA und einem Teil der tracrRNA. Bevorzugt befindet sich am 5'-Ende der 20 Nukleotide (Position 1) ein Guaninnukleotid (GC-clamp) und vier Nukleotide vor dem PAM (Position 17) ein Adenin- oder Thyminnukleotid.[11] Programme zur Identifikation von 20 Nukleotiden vor einem PAM bzw. zum Entwerfen einer sgRNA sind beispielsweise CHOPCHOP,[12] CasOFFinder,[13] FlyCRISPR,[14] CRISPR-ERA,[15] SgRNA Designer,[16] CRISPOR,[17] E-CRISP[18] und CRISPRdirect.[19]
↑ abF. Jiang, D. W. Taylor, J. S. Chen, J. E. Kornfeld, K. Zhou, A. J. Thompson, E. Nogales, J. A. Doudna: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. In: Science. Band 351, Nummer 6275, Februar 2016, S. 867–871, doi:10.1126/science.aad8282, PMID 26841432, PMC 5111852 (freier Volltext).
↑W. Jiang, D. Bikard, D. Cox, F. Zhang, L. A. Marraffini: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. In: Nature Biotechnology. Band 31, Nummer 3, März 2013, S. 233–239, doi:10.1038/nbt.2508, PMID 23360965, PMC 3748948 (freier Volltext).
↑J. M. Peters, A. Colavin, H. Shi, T. L. Czarny, M. H. Larson, S. Wong, J. S. Hawkins, C. H. Lu, B. M. Koo, E. Marta, A. L. Shiver, E. H. Whitehead, J. S. Weissman, E. D. Brown, L. S. Qi, K. C. Huang, C. A. Gross: A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. In: Cell. Band 165, Nummer 6, Juni 2016, S. 1493–1506, doi:10.1016/j.cell.2016.05.003, PMID 27238023, PMC 4894308 (freier Volltext).
↑X. T. Li, Y. Jun, M. J. Erickstad, S. D. Brown, A. Parks, D. L. Court, S. Jun: tCRISPRi: tunable and reversible, one-step control of gene expression. In: Scientific Reports. Band 6, 12 2016, S. 39076, doi:10.1038/srep39076, PMID 27996021, PMC 5171832 (freier Volltext).
↑J. E. DiCarlo, J. E. Norville, P. Mali, X. Rios, J. Aach, G. M. Church: Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. In: Nucleic acids research. Band 41, Nummer 7, April 2013, S. 4336–4343, doi:10.1093/nar/gkt135, PMID 23460208, PMC 3627607 (freier Volltext).
↑G. W. Thickbroom, F. L. Mastaglia: Cerebral events preceding self-paced and visually triggered saccades. A study of presaccadic potentials. In: Electroencephalography and clinical neurophysiology. Band 62, Nummer 4, Juli 1985, S. 277–289, doi:10.1016/0168-5597(85)90005-x, PMID 2408874.
↑W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J. R. Yeh, J. K. Joung: Efficient genome editing in zebrafish using a CRISPR-Cas system. In: Nature Biotechnology. Band 31, Nummer 3, März 2013, S. 227–229, doi:10.1038/nbt.2501, PMID 23360964, PMC 3686313 (freier Volltext).
↑H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang, R. Jaenisch: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. In: Cell. Band 153, Nummer 4, Mai 2013, S. 910–918, doi:10.1016/j.cell.2013.04.025, PMID 23643243, PMC 3969854 (freier Volltext).
↑Ishani Dasgupta, Terence R. Flotte, Allison M. Keeler: CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. In: Human Gene Therapy. Band32, Nr.5-6, März 2021, ISSN1043-0342, S.275–293, doi:10.1089/hum.2021.013 (liebertpub.com [abgerufen am 20. Januar 2025]).
↑M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, E. Charpentier: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. In: Science. Band 337, Nummer 6096, August 2012, S. 816–821, doi:10.1126/science.1225829, PMID 22745249, PMC 6286148 (freier Volltext).
↑CRISPOR. In: crispor.tefor.net. Abgerufen am 30. Januar 2019.
↑E-CRISP Design. In: e-crisp.org. 1. Januar 2013, abgerufen am 30. Januar 2019 (enc).
↑S. E. Mohr, Y. Hu, B. Ewen-Campen, B. E. Housden, R. Viswanatha, N. Perrimon: CRISPR guide RNA design for research applications. In: The FEBS journal. Band 283, Nummer 17, 09 2016, S. 3232–3238, doi:10.1111/febs.13777, PMID 27276584, PMC 5014588 (freier Volltext).
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!