Weitere Dezimalstellen finden sich auch unter Folge A002163 in OEIS.
Derzeit (Stand 12. Dezember 2020) sind 2.000.000.000.000 Nachkommastellen von der Quadratwurzel aus 5 bekannt. Sie wurden von Hiroyuki Oodaira (大平 寛之) am 4. Juli 2019 berechnet.[1]
Beweis der Irrationalität
Der Beweis für die Irrationalität erfolgt ähnlich wie beim Beweis der Irrationalität von Quadratwurzel aus 2 indirekt, also durch Widerlegen der gegenteiligen Annahme.
Angenommen, wäre rational. Dann könnte man die Zahl als Bruch zweier natürlicher Zahlen und schreiben:
.
Durch Quadrieren der Gleichung erhält man
und daraus folgt
.
Der Primfaktor 5 kommt in bzw. doppelt so oft vor wie in bzw. , jedenfalls geradzahlig oft, wobei natürlich auch das 0-malige Auftreten zugelassen ist. Also kommt der Primfaktor auf der linken Seite dieser Gleichung ungeradzahlig oft vor, auf der rechten hingegen geradzahlig oft, und wir erhalten einen Widerspruch zur Eindeutigkeit der Primfaktorzerlegung. Daher ist irrational.
Auch in der expliziten Formel für die Fibonacci-Zahlen
kommt die Quadratwurzel aus 5 vor.
Geometrie
Geometrisch entspricht der Diagonale eines Rechtecks mit den Seitenlängen 1 und 2, was sich unmittelbar aus dem Satz des Pythagoras ergibt. Ein solches Rechteck erhält man durch Halbierung eines Quadrats oder dadurch, dass man zwei gleich große Quadrate Seite an Seite aneinanderfügt. Zusammen mit der algebraischen Beziehung zwischen und ist das die Grundlage für die geometrische Konstruktion eines Goldenen Rechtecks aus einem Quadrat und damit für die Konstruktion eines regelmäßigen Fünfecks mit gegebener Seitenlänge. ist nämlich das Verhältnis einer Fünfecksdiagonale zur Seitenlänge.
Trigonometrie
Ähnlich wie und kommt die Quadratwurzel aus 5 des Öfteren bei den exakten trigonometrischen Werten spezieller Winkel vor, insbesondere bei den Sinus- und Cosinus-Werten der Winkel, deren Gradangaben durch 3, aber nicht durch 15 teilbar sind.[2] Einfache Beispiele sind:
Algebra
Der Ring enthält die Zahlen der Form , wobei und ganze Zahlen sind und die imaginäre Zahl symbolisiert. Dieser Ring ist ein häufig zitiertes Beispiel für einen Integritätsring, der kein faktorieller Ring (ZPE-Ring) ist. Dies erkennt man beispielsweise daran, dass die Zahl 6 zwei nicht äquivalente Faktorisierungen innerhalb dieses Rings hat:
↑K. G. Ramanathan: On the Rogers-Ramanujan continued fraction. In: Proceedings of the Indian Academy of Sciences - Section A. Band93, Nr.2-3, Dezember 1984, ISSN0370-0089, S.67–77, doi:10.1007/BF02840651 (springer.com [abgerufen am 12. März 2020]).