Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Eine frühe Synthese von 2-Pyridincarbaldehyd geht vom Picolin aus und besteht aus sechs Schritten. Der erste Schritt ist die Schützung des Stickstoffatoms mit Methyliodid. Dabei entsteht ein Pyridiniumiodid. Im zweiten Schritt wird das Pyridiniumiodid mit äquimolaren Mengen von N,N-Dimethyl-4-nitrosoanilin oxidativ zum Imin umgesetzt. Dabei dient Piperidin als Base und Ethanol als Lösungsmittel. Das entstandene Imin ergibt beim Kristallisieren aus Ethanol einen grünen Feststoff, welcher noch ein Molekül Ethanol pro Molekül Imin beinhaltet. Durch Erhitzen im Vakuum kann der restliche Alkohol vertrieben werden und hinterlässt das Imin als roten Feststoff. Das trockene Imin wird im dritten Schritt durch Salzsäure hydrolysiert. Der Aldehyd wird im vierten Schritt nochmals zum Hydrazon umfunktionalisiert, was durch Reaktion mit Phenylhydrazin erfolgt. Das stabile Hydrazon wird bei der thermischen Abspaltung der Stickstoff-Schutzgruppe im fünften Schritt nicht verändert. Der sechste Schritt ist wiederum die Hydrolyse des Hydrazons mit Salzsäure zum Aldehyd.[3][4]
Die Autoren Mathes, Sauermilch und Klein publizierten 1951 die bis dahin effizienteste Synthese (bekannt als Sauermilch-Oxidation), nämlich der direkten Oxidation von Picolin in der Gasphase auf einem gemischten Vanadium/Molybdän-Katalysator, welcher auf einen Träger aus Silicagel aufgebracht war. Um nicht andere Oxidationsprodukte zu erhalten, war es wichtig, eine verdünnte wässrige Lösung des Picolins mit nur 5 % in das Katalysatorbett einzudampfen. Bei höheren Konzentrationen des Picolins wurden dimere Oxidationsprodukte erhalten. Der Sauerstoff für die Oxidation stammt hierbei aus mit dem Dampf mitgeführter Umgebungsluft.[6]