Et stykke computersoftware eller kortere software også kaldet programmel, udgøres af et eller flere computerprogrammer.[1] Et computerprogram eller kortere program er en samling processorinstruktioner[2] som sætter computeren i stand til at løse en bestemt opgave.[3] Dette er i kontrast til fysisk hardware, af hvilken systemet er bygget og faktisk udfører arbejdet. Indenfor datalogi og softwareudvikling omfatter software computerprogrammer, systemprogrammer, hjælpeprogrammer, programbiblioteker og relaterede ikke-udførbare data, såsom online dokumentation eller digitale lagringsmedier. Computerhardware og software forudsætter hinanden og ingen af dem kan realistisk set anvendes alene.
På det laveste programmeringsniveau haves udførbar kode bestående af maskinsprogsinstruktioner, der afvikles af en individuel processor — typisk en central processing unit (CPU) eller en graphics processing unit (GPU). Et maskinsprog består af grupper af binære værdier, som indikerer processorinstruktioner, der under afvikling ændrer computerens tilstand fra den forgående tilstand. Fx kan en instruktion ændre værdien lagret i et bestemt lagerposition i en computer — en effekt som ikke direkte kan observeres af en bruger. En instruktion kan også udføre et kald; fx en af de mange input- eller output-operationer, fx udlæse noget tekst på en computer visningsenhed; hvilket viser en tilstand som er synlig for brugeren. Processoren afvikler instruktionerne i den rækkefølge de modtages, medmindre processoren instrueres i at "hoppe" til en anden instruktion, eller bliver interruptet af styresystemet. Pr. 2015 har de fleste PCere, smartphone enheder og servere processorer med flere processorkerner.
Det meste software skrives i højniveauprogrammeringssprog. Højniveauprogrammeringssprog er lettere og mere effektive for programmører og softwareudviklere, fordi de er tættere på naturlige sprog end maskinsprog.[4] Højniveauprogrammeringssprog oversættes til maskinsprog ved at anvende en compiler eller en fortolker - eller en kombination af begge. Software kan også skrives i et lavniveau assemblersprog, som har en stærk korrespondance til computerens maskinsprogsinstruktioner og bliver oversat til maskinsprog ved at anvende en assembler.
En skitse (algoritme) for hvad som kunne have været det første stykke skrevne software, blev skrevet af Ada Lovelace i det 19. århundrede, for den planlagte Analytical Engine.[5] Ada Lovelace lavede matematiske beviser for at vise hvordan maskinen ville beregne Bernoulli-tal.[5] Grundet beviserne og algoritmen, betragtes Ada Lovelace som den første computerprogrammør.[6][7]
Den første teori om software — før skabelsen af computere som vi kender dem i dag — blev foreslået af Alan Turing i hans 1935 artikel On Computable Numbers, with an Application to the Entscheidungsproblem (decision problem).
Alan Turing teori ledte senere til oprettelsen af det akademiske område datalogi og softwareudvikling; begge områder udforsker software og dens tilblivelse.
Før 1946 var software ikke endnu programmer lagret i digital hukommelse, som vi kender det i dag. De første elektroniske computerenheder blev hardwired og om-hardwired for at "omprogrammere" dem.
På stort set alle computerplatforme kan software grupperes i nogle få brede kategorier.
Baseret på målet, kan computersoftware inddeles i:
Programmeringsværktøjer er også software i form af programmer eller applikationer som softwareudviklere (også kendt som programmører, kodere, hackere eller softwareingeniører) anvendes til at skabe, debug, vedligeholde (fx forbedre eller rette) eller anden support software.
Software skrives i et eller flere programmeringssprog; der eksisterer mange programmeringssprog, og hver har mindst en implementering, hver består af sit egne mængder af programmeringsværktøjer. Disse programmeringsværktøjer kan være relativt selvtilstrækkelige programmer såsom oversættere, debuggere, fortolkere, linkere og teksteditorer, som kan kombineres sammen til at være et job; eller de kan udgøre et integreret softwareudviklingsmiljø (IDE), som kombinerer meget eller al funktionalitet af sådanne selvtilstrækkelige programmeringsværktøjer. IDEs kan gøre dette ved at kalde de relevante individuelle værktøjer eller ved at genimplementere deres funktionalitet på en ny måde. En IDE kan gøre det lettere at gøre specifikke opgaver, såsom søgning i filer i et bestemt programmeringsprojekt. Mange implementeringer af programmeringssprog tilbyder denne mulighed ved at anvende både individuelle programmeringsværktøjer eller en IDE.
Brugere ser ofte ting på en anden måde end programmører. Mennesker, som anvender moderne universelle computere (i modsætning til indlejrede systemer, analoge computere og supercomputere), ser typisk tre softwarelag som udfører forskellige former for opgaver: platform, applikation og brugersoftware.
Computersoftware skal "lægges" ind i computerens datalager (såsom harddisken eller hukommelsen). Når softwaren én gang er lagt på datalageret, er computeren i stand til at køre eller udføre softwaren. Dette omfatter at mediere processorinstruktioner fra applikationssoftware, gennem systemsoftware, til hardwaren som i sidste ende modtager instruktioner som maskinkode.
Softwarekvalitet er meget vigtig, specielt for kommerciel software og systemsoftware som fx Microsoft Office, Microsoft Windows og Linux. Hvis softwaren er fejlbehæftet, kan den forårsage at en brugers arbejde mistes (slettes), software computernedbrud og have andre utilsigtede virkninger. De fleste af sådanne fejl findes via "softwareaflusning", og denne proces udføres under alfatestning og betatestning.
Ifølge USAs CISA-chef Jen Easterly er dårlig softwarekvalitet skyld i verdens cybersikkerhedsproblemer.[10][11] CISA anbefaler at softwareudviklere skriver deres programmer i hukommelsessikre programmeringssprog som fx Rust, Python, C#, Go, Swift eller Java - især Rust fremhæves som et godt hukommelsessikkert programmeringssprog.[12][13] USAs DARPA foreslår at konvertere C-kode til Rust-kode via maskinlæring. Projektet kaldes TRanslating All C TO Rust - kort TRACTOR.[14]
En softwarenslicens giver brugeren retten til at anvende softwaren i et licenseret miljø - og i tilfældet af frie software licenser, har man også andre rettigheder som fx at lave kopier.
Proprietær software kan inddeles i to typer:
Open source software (det vil sige at kildekoden er frit tilgængelig) kommer i minimum to varianter:
Softwarepatenters formål, er ligesom andre typer af patenter, teoretisk tænkt til at give opfinderen en eksklusiv, tidsbegrænset licens for en detaljeret idé (fx en algoritme) på hvordan noget implementeres et stykke software. Idéer for brugbare ting som software kan gøre, og brugerkrav, er ikke tænkt til at være patentérbare og konkrete implementeringer (fx den aktuelle softwarepakke der implementerer patentet) er heller ikke ment til at være patentérbare - det sidste tilfælde er allerede typisk automatisk dækket af copyright. Så softwarepatenter er ment til at dække området mellem krav og konkrete implementeringer.
Design og implementering af software er afhængig af kompleksiteten af softwaren. Fx, design og skabelse af Microsoft Word tog meget længere tid end tiden for design og udvikling af Microsoft Notepad, fordi det sidstnævnte har meget simplere funktionalitet.
Software er sædvandligvis designet og skabt (også kendt som kodet/skrevet/programmeret) i integrerede softwareudviklingsmiljøer (IDE) som fx Eclipse, IntelliJ og Microsoft Visual Studio, som kan simplificere processen og compilere softwaren (hvis muligt). Som tidligere nævnt, skabes software typisk ovenpå eksisterende software og application programming interface (API) som det underliggende software tilbyder som fx GTK+, JavaBeans eller Swing. Biblioteker (APIs) kan kategoriseres efter deres formål. Fx, Spring Framework anvendes til at implementere enterprise applikationer, Windows Forms biblioteket anvendes til at designe grafisk brugergrænseflade (GUI) applikationer som fx Microsoft Word - og Windows Communication Foundation anvendes til at designe webservices. Når et program er designet, støtter det sig APIen. Fx, en Microsoft Windows skrivebordsapplikation kan kalde API-funktioner i .NET Windows Forms library som fx Form1.Close() og Form1.Show()[15] til at lukke eller åbne applikationen. Uden disse APIer, skal programmøren selv programmere alle disse funktionaliteter. Selskaber som fx Oracle og Microsoft tilbyder deres egne APIer så mange applikationer bliver skrevet ved at anvende deres programbiblioteker som typisk har talrige APIer i sig.
Datastrukturer såsom hashtabeller, tabeller og binære søgetræer og algoritmer såsom quicksort, kan være nyttige ved skabelsen af software.
Computersoftware har specielle økonomiske kendetegn som gør dets design, skabelse og distribution forskellig fra de fleste andre økonomiske varer.[16][17]
En person som skaber software kaldes for en programmør, softwareingeniør eller softwareudvikler, termer som alle har omtrent samme betydning. Mere uformelle termer for programmører eksisterer også såsom "koder" og "hacker" – selvom brug af sidstnævnte term kan skabe forvirring, fordi det oftere anvendes til at betyde nogen som illegalt bryder ind i computersystemer.
Der er en stor diversitet af softwarefirmaer og programmører i verden og de udgør en softwareindustri. Software kan faktisk være en meget profitabel industri: Bill Gates, medgrundlæggeren af Microsoft var den rigeste person i verden i 2009, mest grundet hans ejerskab af mange aktier i Microsoft, selskabet som er ansvarlig for Microsoft Windows og Microsoft Office softwareprodukterne - begge markedsledende i deres respektive produktkategorier.
Almennyttige softwareorganisationer omfatter Free Software Foundation, GNU Project og Mozilla Foundation. Softwarestandard organisationer som fx W3C, IETF udvikler anbefalede softwarestandarder såsom XML, HTTP og HTML, så software kan have interoperabilitet ved at understøtte disse standarder.
Andre velkendte store softwareselskaber omfatter Facebook, Instagram, Apple, Google, IBM, HCL Technologies, Oracle, Novell, SAP, Symantec, Adobe Systems og Amazon, mens små selskaber ofte yder innovation.
{{cite web}}