Vazodilatacija ili vazodilacija je pojava/proces širenja krvnih sudova.[1] Ova pojava je rezultat opuštanja ćelija glatkih mišića unutar zidova suda, posebno u velikim venama, velikim arterijama i manjim arteriolama. Proces je suprotan od vazokonstrikcije, koji se ispoljava u suženju krvnih sudova.
Kada se krvni sudovi šire, povećava se protok krvi zbog pada u cirkulacijskom otporu. Stoga, dilatacija arterijskih krvnih sudova (uglavnom arteriola) smanjuje krvni pritisak. Odgovor može biti unutrašnji (zbog lokalnih procesa u okruženju tkiva) ili spoljašnji (zbog djelovanja hormona ili nervnih činilaca). Osim toga, pokretač može biti lokaliziran na određeni organ (ovisno o metaboličkim potrebama određenog tkiva, kao i tokom naporne vježbe) ili to može biti sistemski (vidi: sistemska cirkulacija).
Endogene supstance i lijekovi koji izazivaju vazodilataciju zovu se vazodilatatori. Takva vazoaktivnost je potrebna za održavanja homeostaze (održavajući normalne tjelesne uloge).
Uloga vazodilatacije
Glavna uloga vazodilatacije je da se poveća protok krvi u tjelesnim tkivima kada je to najpotrebnije. To je često odgovor na lokaliziranu potrebu za kisikom, ali se može javiti i kada neko tkivo ne prima dovoljno glukoze, lipida ili drugih hranjivih tvari. Lokalizirana tkiva imaju više načina da obezbijede povećanje protoka krvi, među kojima je oslobađanje vazodilatatora, prvenstveno adenozina, u lokalnu intersticijsku tekućinu, koji se raspršuje u kapilarna ležišta, što izazva lokalnu vazodilataciju.[2][3] Neki psiholozi smatraju da nedostatak samog kisika utiče na kapilarna ležišla da opuštaju glatke mišiće, hipoksijom u sudovima određenog tjelesnog područja. Ova hipoteza postavljena je zbog prisustva prekapilarnih sfinktera u ležištima kapilara. Ni jedan od tih pristupa mehanizmu vazodilatacije međusobno ne isključuje drugi/druge.[4]
Vazodilatacija i arterijski otpor
Vazodilatacija direktno utiče na odnos između zračnog arterijskog pritiska, minutnog volumena i ukupnog perifernog otpora (UPO). Vazodilatacija se javlja u fazi srčanih sistola, dok vazokonstrikcija slijedi u suprotnoj fazi srčanih dijastola. Protok krvi (protok krvi izmjeren volumenom po jedinici vremena) se izračunava množenjem broja otkucaja srca (u minuti), a udarni volumen je volumen izbačene krvi tokom ventrikularne sistole. UPO ovisi o nekoliko činilaca, uključujući i dužinu suda, dok viskoznost krvi (određuje hematokrit) i promjer krvnih sudova. Ovo drugo je najvažnija varijabla u određivanju otpora, dok se UPO mijenja do četvrte potencije radijusa. Povećanje bilo koje od ovih fizioloških komponenti (minutnog volumena ili UPO) izaziva porast srednjeg arterijskog pritiska. Vazodilatacija djeluje na smanjenje UPO i krvnog pritiska, opuštanjem ćelija glatkih mišića u srednjem sloju omotača velikih arterija i manjih arteriola.[5]
Vazodilatacija je proizvod opuštanja u glatkim mišićima oko krvnih sudova. Ovo opuštanje se s druge strane, oslanja na uklanjanje stimulansa za kontrakcije, što zavisi od koncentracije unutarćelijskog kalcija i usko je povezana sa fosforilacijom lahkog lanca kontraktilnog proteina miozina. Stoga, vazodilatacija djeluje uglavnom ili putem snižavanja količine unutarćelijskog kalcija ili defosforilacijom (zamjena ATP za ADP) miozina. Defosforilacijafosfataze miozinskog lahkog lanca i indukcija kalcijevih simportera i antiportera da pumpaju jone kalcija iz unutarćelijske pregrade i doprinose opuštanju ćelija glatkih mišića, a samim tim i vazodilatacije. To se postiže ponovnim preuzimanjem jona u sarkoplazmatskom retikulumu preko izmjenjivača i izbacivanjem preko plazma membrane.[6]
Postoje tri glavna unutarćelijska stimulansa koji mogu izazvati vazodilataciju krvnih sudova. Posebni mehanizmi za postizanje ovih efekata variraju od jednog do drugog vazodilatatora.
Električni naboj u ćelijskom membranskom potencijalu mirovanja utiče na nivo intracelularnog kalcija putem oblikovanje kalcijevih kanala koji su osjetljivi na napon u membrani.
Iako je uočeno da simpatički nervni sistem ima potrošnu ulogu u vazodilataciji, to je samo jedan od mehanizama kojima se ona može postići. Kičmena moždina ima vazodilatacijske i vazokonstrikcijske živce. Neuroni koji kontroliraju vaskularnu vazodilataciju potiču iz hipotalamusa. Neke simpatičke stimulacije arteriola u skeletnim mišićima, posredovane su aktivnošću epinefrina na β-adrenergične receptore arteriola glatkih mišića. Oni bi mogli posredovati u cAMP putevima, kao što je gore objašnjeno. Međutim, pokazalo se da ova simpatička stimulacije igra malu ili nikakvu ulogu u tome da li su skeletni mišići u stanju da prime dovoljno kisika, čak i na visokom nivou napora, pa se smatra da je ovaj način vazodilatacije malo značajan za fiziologiju čovjeka.[12]
Ovaj sistem može se aktivirati u slučajevima emocionalnog stresa, što dovodi do nesvjestica, a zbog smanjenja krvnog pritiska usljed vazodilatacije, koje se naziva vazovagalna sinkopa
Vazodilatacija na hladnoći
Vazodijatacija koja je izazvana hladnoćom (VDH) javlja se nakon izlaganja takvim okolnostima, vjerovatno da bi se smanjio rizik od povreda. To se može odvijati na nekoliko mjesta u ljudskom tijelu, ali je najčešće uočeno u ekstremitetima. Prsti su po tome posebno općepoznati jer su najčešće izloženi.
Kada su prsti izloženi hladnoći, prvo se javlja vazokonstrikcija, koja će smanjiti gubitak topline, što dovodi do snažnog hlađenja prstiju. Oko pet do deset minuta nakon početka izloženosti hladnoći, krvni sudovi u vrhovima prstiju ruke će iznenada vazodilatirati. Ovo je vjerovatno uzrokovano naglim padom u oslobađanju neurotransmitera iz simpatičkih živaca na mišićni sloj arteriovenske anastomoze, zbog lokalnog hlađenja. VDH povećava protok krvi, a potom temperaturu prstiju. To može biti ponekad bolno, a poznato je kao "vruća bol", što može biti dovoljno bolno da izazove povraćanje.
Nova faza vazokonstrikcija prati vazodilataciju, nakon čega se proces ponavlja. To se zove lovna reakcija. Eksperimenti su pokazali da su moguća tri vaskularna odgovora na uranjanje prstiju u hladnu vodu: kontinuirano stanje vazokonstrikcije, sporo, stabilno i kontinuirano zagrijavanje i proporcionalno upravljanje oblikom u kojem prečnik krvnog suda ostaje stalan nakon početne faze vazokonstrikcija. Međutim, velika većina odgovora može se svrstati u lovnu reakciju.[13]
Ostali mehanizmi vazodilatacije
Od ostalih predloženih mehanizama vazodilatacije, najčešće su uključeni oni koje izazivaju sljedeći faktori:
apigenin: kod pacova, u malim mesenternim arterijama, apigenin djeluje na TRPV4 u endotelnim ćelijama i izaziva dilataciju krvnih sudova koja je posredovana preko EDHF.
^Sato A, Terata K, Miura H, Toyama K, Loberiza FR, Hatoum OA, Saito T, Sakuma I, Gutterman DD (april 2005). "Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease". American Journal of Physiology. Heart and Circulatory Physiology. 288 (4): H1633–40. doi:10.1152/ajpheart.00575.2004. PMID15772334.CS1 održavanje: upotreba parametra authors (link)
^Guyton, Arthur; Hall, John (2006). "Chapter 17: Local and Humoral Control of Blood Flow by the Tissues". u Gruliow, Rebecca (ured.). Textbook of Medical Physiology (Book) (11th izd.). Philadelphia, Pennsylvania: Elsevier Inc. str. 196–197. ISBN0-7216-0240-1.
^Modin A, Björne H, Herulf M, Alving K, Weitzberg E, Lundberg JO (2001). "Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation". Acta Physiol. Scand. 171 (1): 9–16. doi:10.1046/j.1365-201x.2001.171001009.x. PMID11350258.CS1 održavanje: upotreba parametra authors (link)
^Franco-Cereceda A, Rudehill A (august 1989). "Capsaicin-induced vasodilatation of human coronary arteries in vitro is mediated by calcitonin gene-related peptide rather than substance P or neurokinin A". Acta Physiolgica Scandinavica. 136 (4): 575–80. doi:10.1111/j.1748-1716.1989.tb08704.x. PMID2476911.CS1 održavanje: upotreba parametra authors (link)