Transkripcijski faktor SOX-9 je protein koji kod ljudi kodiran genomSOX9.[5][6]
Funkcija
SOX-9 prepoznaje sekvencu CCTTGAG, zajedno sa ostalim članovima DNK-vezujućih proteina klase HMG-boksa. Ispoljava se proliferirajućim, ali ne hipertrofijskim hondrocitima, što je neophodno za diferencijaciju prekursorskih ćelija u hondrocite.[7] i, sa stereoidnim faktorom 1, regulira transkripciju gena antimelerovskog hormona antimüllerovakog hormona (AMH).[6]
SOX-9 također ima ključnu ulogu u spolnom razvoju muškaraca; radeći sa Sf1, SOX-9 može proizvesti AMH u Sertolijevim ćelijama da inhibira stvaranje ženskog reproduktivnog sistema.[8] Također komunicira s nekoliko drugih gena kako bi pospješio razvoj muških spolnih organa. Proces započinje kada faktor transkripcijetestis-determinirajući faktor (kodiran iz regije za određivanje spola SRYY hromosoma aktivira aktivnost SOX-9 vezivanjem za pojačivač uzvodne sekvence.[9] Nadalje, Sox9 aktivira FGF9 i formira povratne petlje sa FGF9[10] i PGD2.[9] Ove petlje su važne za proizvodnju SOX-9; bez njih, SOX-9-a bi ponestalo i gotovo sigurno bi uslijedio razvoj ženke. Aktivacija FGF9 puem SOX-9 pokreće vitalne procese u razvoju muškarca, poput stvaranja testisnih vrpci i umnožavanja Sertolijevih ćelija.[11] U razvoju mozga, njegov mišji ortolog Sox-9 inducira ekspresiju Wwp1, Wwp2 i miR-140 za regulaciju ulaska u korteksne ploče novorođenih nervnih ćelija i reguliranje grananja i stvaranje aksona u korteksnim neuronima.[12]
Protein Sox9 sudjelovao je u pokretanju i napredovanju više solidnih tumora. funkcije Sox9 u [15] Njegova uloga kao glavnog regulatora morfogeneze tokom razvoja čovjeka čini ga idealnim kandidatom za perturbaciju u malignim tkivima. Konkretno, čini se da Sox9 izaziva invazivnost i otpornost na terapiju kod rakova prostati[16] kolorektuma,[17]dojkama[18] i drugim kancerina, a ponekad promovira i letalne metastaze.[19] Izleda da mnogi od ovih onkogenih efekata Sox9 ovise od doze.[20]
Kokalizacija i dinamika SOX9-a
SOX9 je uglavnom lokaliziran u jedru i vrlo je mobilan. Studije na ćelijskoj liniji hondrocita otkrile su da je gotovo 50% SOX9-a vezano za DNK i izravno je reguliran vanjskim faktorima. Njegovo poluvrijeme boravka na DNK je ~ 14 sekundi.[21]
Uloga u reverziji spola
Mutacije u Sox9 ili bilo koji pridruženi geni mogu izazvatireverziju pola i hermafroditizam (ili intersekse kod ljudi). Ako Fgf9, koji aktivira Sox9, nije prisutan, fetus s X i Y hromosomom može razviti ženske spolne žlijezde; isto vrijedi i ako nije prisutan Dax1.[11] Srodni fenomeni hermafroditizma mogu biti uzrokovani neobičnom aktivnošću SRY, obično kada se translocira na X-hromosom i njegova aktivnost pokrene se samo u nekim ćelijama.[22]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Tommerup N, Schempp W, Meinecke P, Pedersen S, Bolund L, Brandt C, et al. (juni 1993). "Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1". Nature Genetics. 4 (2): 170–4. doi:10.1038/ng0693-170. PMID8348155.
^Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, et al. (mart 2009). "Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence". Nature Genetics. 41 (3): 359–64. doi:10.1038/ng.329. PMID19234473.
^Prévostel, C; Blache, P (novembar 2017). "The dose-dependent effect of SOX9 and its incidence in colorectal cancer". European Journal of Cancer. 86: 150–157. doi:10.1016/j.ejca.2017.08.037. PMID28988015.
Ninomiya S, Narahara K, Tsuji K, Yokoyama Y, Ito S, Seino Y (mart 1995). "Acampomelic campomelic syndrome and sex reversal associated with de novo t(12;17) translocation". American Journal of Medical Genetics. 56 (1): 31–4. doi:10.1002/ajmg.1320560109. PMID7747782.
Lefebvre V, de Crombrugghe B (mart 1998). "Toward understanding SOX9 function in chondrocyte differentiation". Matrix Biology. 16 (9): 529–40. doi:10.1016/S0945-053X(98)90065-8. PMID9569122.
Harley VR (2002). The molecular action of testis-determining factors SRY and SOX9. Novartis Found. Symp. Novartis Foundation Symposia. 244. str. 57–66, discussion 66–7, 79–85, 253–7. doi:10.1002/0470868732.ch6. ISBN9780470843468. PMID11990798.
Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, et al. (decembar 1994). "Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene". Nature. 372 (6506): 525–30. Bibcode:1994Natur.372..525F. doi:10.1038/372525a0. PMID7990924.
Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. (decembar 1994). "Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9". Cell. 79 (6): 1111–20. doi:10.1016/0092-8674(94)90041-8. PMID8001137.
Südbeck P, Schmitz ML, Baeuerle PA, Scherer G (juni 1996). "Sex reversal by loss of the C-terminal transactivation domain of human SOX9". Nature Genetics. 13 (2): 230–2. doi:10.1038/ng0696-230. PMID8640233.
Ninomiya S, Yokoyama Y, Teraoka M, Mori R, Inoue C, Yamashita S, et al. (septembar 2000). "A novel mutation (296 del G) of the SOX90 gene in a patient with campomelic syndrome and sex reversal". Clinical Genetics. 58 (3): 224–7. doi:10.1034/j.1399-0004.2000.580310.x. PMID11076045.