In 2017, more accurate analysis found it to be a binary system made up of two substellar objects of spectral class≥Y1 in orbit less than one astronomical unit from each other.[3]
Brown dwarfs are defined as substellar objects that have at some time in their lives burnt deuterium in their interior. The borderline between a brown dwarf and a planet is conventionally taken to be 13 times the mass of Jupiter. All brown dwarfs are either M dwarfs, L dwarfs, T dwarfs or Y dwarfs, in order of decreasing temperature. An increasing number after the letter in the spectral type also means decreasing temperature, a Y2 dwarf is cooler than a Y1 dwarf is cooler than a Y0 dwarf. Planets can also be L dwarfs, T dwarfs or Y dwarfs.[4]
JWST observation
WISE 0535−7500 was studied with JWST by Beiler et al. in 2024 together with 22 other late-T and Y-dwarfs. WISE 0535−7500 stands out due to it having no discernable CO2 band and an almost undetectable CO band. This could be due a low metallicity or high surface gravity. These features make this object extremely red in Spitzer colors. This object also showed stronger NH3 absorption when compared to objects of the same temperature. Other common prominent features like H2O and CH4 are present in its spectrum. But like other late-T and Y-dwarfs it is missing PH3, which is predicted to occur for these objects.[2]
^ abcdBeiler, Samuel A.; Cushing, Michael C.; Kirkpatrick, J. Davy; Schneider, Adam C.; Mukherjee, Sagnick; Marley, Mark S.; Marocco, Federico; Smart, Richard L. (11 Jul 2024). "Precise Bolometric Luminosities and Effective Temperatures of 23 late-T and Y dwarfs Obtained with JWST". arXiv:2407.08518 [astro-ph.SR].
^I. Neill Reid and Stanimir A. Metchev, Chapter 5: The Brown Dwarf – Exoplanet Connection, in John W. Mason (ed.) Exoplanets: Detection, Formation, Properties, Habitability; Springer, Berlin, 2008.