In the beginnings of particle physics (first half of the 20th century), hadrons such as protons, neutrons and pions were thought to be elementary particles. However, as new hadrons were discovered, the 'particle zoo' grew from a few particles in the early 1930s and 1940s to several dozens of them in the 1950s. The relationships between each of them were unclear until 1961, when Murray Gell-Mann[2] and Yuval Ne'eman[3] (independently of each other) proposed a hadron classification scheme called the Eightfold Way, or in more technical terms, SU(3)flavor symmetry.
This classification scheme organized the hadrons into isospin multiplets, but the physical basis behind it was still unclear. In 1964, Gell-Mann[4] and George Zweig[5][6] (independently of each other) proposed the quark model, then consisting only of up, down, and strange quarks.[7] However, while the quark model explained the Eightfold Way, no direct evidence of the existence of quarks was found until 1968 at the Stanford Linear Accelerator Center.[8][9]Deep inelastic scattering experiments indicated that protons had substructure, and that protons made of three more-fundamental particles explained the data (thus confirming the quark model).[10]
Despite being extremely common, the bare mass of the up quark is not well determined, but probably lies between 1.8 and 3.0 MeV/c2.[15]Lattice QCD calculations give a more precise value: 2.01±0.14 MeV/c2.[16]
When found in mesons (particles made of one quark and one antiquark) or baryons (particles made of three quarks), the 'effective mass' (or 'dressed' mass) of quarks becomes greater because of the binding energy caused by the gluon field between each quark (see mass–energy equivalence). The bare mass of up quarks is so light, it cannot be straightforwardly calculated because relativistic effects have to be taken into account.
^
M. Gell-Mann (2000) [1964]. "The Eightfold Way: A theory of strong interaction symmetry". In M. Gell-Mann, Y. Ne'eman (ed.). The Eightfold Way. Westview Press. p. 11. ISBN978-0-7382-0299-0. Original: M. Gell-Mann (1961). "The Eightfold Way: A theory of strong interaction symmetry". Synchrotron Laboratory Report CTSL-20. California Institute of Technology.