Ghost (physics)

In the terminology of quantum field theory, a ghost, ghost field, ghost particle, or gauge ghost is an unphysical state in a gauge theory. Ghosts are necessary to keep gauge invariance in theories where the local fields exceed a number of physical degrees of freedom.

If a given theory is self-consistent by the introduction of ghosts, these states are labeled "good". Good ghosts are virtual particles that are introduced for regularization, like Faddeev–Popov ghosts. Otherwise, "bad" ghosts admit undesired non-virtual states in a theory, like Pauli–Villars ghosts that introduce particles with negative kinetic energy.

An example of the need of ghost fields is the photon, which is usually described by a four component vector potential Aμ, even if light has only two allowed polarizations in the vacuum. To remove the unphysical degrees of freedom, it is necessary to enforce some restrictions; one way to do this reduction is to introduce some ghost field in the theory. While it is not always necessary to add ghosts to quantize the electromagnetic field, ghost fields are strictly needed to consistently and rigorously quantize non-Abelian Yang–Mills theory, such as done with BRST quantization.[1][2]

A field with a negative ghost number (the number of ghosts excitations in the field) is called an anti-ghost.

Good ghosts

Faddeev–Popov ghosts

Faddeev–Popov ghosts are extraneous anticommuting fields which are introduced to maintain the consistency of the path integral formulation. They are named after Ludvig Faddeev and Victor Popov.[3][4]

Goldstone bosons

Goldstone bosons are sometimes referred to as ghosts, mainly when speaking about the vanishing bosons of the spontaneous symmetry breaking of the electroweak symmetry through the Higgs mechanism. These good ghosts are artifacts of gauge fixing. The longitudinal polarization components of the W and Z bosons correspond to the Goldstone bosons of the spontaneously broken part of the electroweak symmetry SU(2)U(1), which, however, are not observable. Because this symmetry is gauged, the three would-be Goldstone bosons, or ghosts, are "eaten" by the three gauge bosons (W± and Z) corresponding to the three broken generators; this gives these three gauge bosons a mass, and the associated necessary third polarization degree of freedom.[5]

Bad ghosts

"Bad ghosts" represent another, more general meaning of the word "ghost" in theoretical physics: states of negative norm,[6] or fields with the wrong sign of the kinetic term, such as Pauli–Villars ghosts, whose existence allows the probabilities to be negative thus violating unitarity.[7]

Ghost condensate

A ghost condensate is a speculative proposal in which a ghost, an excitation of a field with a wrong sign of the kinetic term, acquires a vacuum expectation value. This phenomenon breaks Lorentz invariance spontaneously. Around the new vacuum state, all excitations have a positive norm, and therefore the probabilities are positive definite.

We have a real scalar field φ with the following action

where a and b are positive constants and

The theories of ghost condensate predict specific non-Gaussianities of the cosmic microwave background. These theories have been proposed by Nima Arkani-Hamed, Markus Luty, and others.[8]

Unfortunately, this theory allows for superluminal propagation of information in some cases and has no lower bound on its energy. This model doesn't admit a Hamiltonian formulation (the Legendre transform is multi-valued because the momentum function isn't convex) because it is acausal. Quantizing this theory leads to problems.

Landau ghost

The Landau pole is sometimes referred as the Landau ghost. Named after Lev Landau, this ghost is an inconsistency in the renormalization procedure in which there is no asymptotic freedom at large energy scales.[9]

See also

References

  1. ^ Faddeev, Ludwig D. (2009). "Faddeev-Popov ghosts". Scholarpedia. 4 (4): 7389. Bibcode:2009SchpJ...4.7389F. doi:10.4249/scholarpedia.7389. ISSN 1941-6016.
  2. ^ Becchi, Carlo Maria; Imbimbo, Camillo (2008-10-26). "Becchi-Rouet-Stora-Tyutin symmetry". Scholarpedia. 3 (10): 7135. Bibcode:2008SchpJ...3.7135B. doi:10.4249/scholarpedia.7135. ISSN 1941-6016.
  3. ^ Faddeev, Ludwig D.; Popov, Victor N. (1967). "Feynman diagrams for the Yang-Mills field". Physics Letters B. 25 (1): 29–30. Bibcode:1967PhLB...25...29F. doi:10.1016/0370-2693(67)90067-6. ISSN 0370-2693.
  4. ^ Chen, W.F. (2008), "Quantum Field Theory and Differential Geometry", Int. J. Geom. Methods Mod. Phys., 10 (4): 1350003, arXiv:0803.1340v2, doi:10.1142/S0219887813500035, S2CID 16651244
  5. ^ Griffiths, David J. (1987). Introduction to elementary particles. New York: Wiley. ISBN 0471603864. OCLC 19468842.
  6. ^ Hawking, Stephen W.; Hertog, Thomas (2002). "Living with Ghosts". Physical Review D. 65 (10): 103515. arXiv:hep-th/0107088. Bibcode:2002PhRvD..65j3515H. doi:10.1103/PhysRevD.65.103515. S2CID 2412236.
  7. ^ Itzhak Bars, John Terning (2010). Extra Dimensions in Space and Time. p. 70. Bibcode:2010edst.book.....B.
  8. ^ Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji (2004-05-29). "Ghost Condensation and a Consistent Infrared Modification of Gravity". Journal of High Energy Physics. 2004 (5): 074. arXiv:hep-th/0312099. Bibcode:2004JHEP...05..074H. doi:10.1088/1126-6708/2004/05/074. ISSN 1029-8479. S2CID 16844964.
  9. ^ Daintith, John, ed. (2009). "Landau ghost". A Dictionary of Physics (6th ed.). Oxford: Oxford University Press. ISBN 9780199233991. OCLC 244417456. Archived from the original on 2017-12-28. Retrieved 2018-04-25.

Read other articles:

Cet article est une ébauche concernant un aéronef et l’URSS. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tupolev ANT-20 « Maxime Gorki » Constructeur Tupolev Rôle Avion de propagande/transport Premier vol 19 mai 1934[1] Mise en service 1934 Date de retrait 14 décembre 1942 Nombre construits 2 Équipage 11 Motorisation Moteur Mikouline AM-34 Nombre 8 Type 12 cylindres en V Puissance unitaire ...

 

Опис файлу Опис Обкладинка синглу Tha 'Mai Allios Джерело http://en.wikipedia.org/wiki/File:Paparizou-Tha_Mai_Allios.JPG Час створення 2009 Автор зображення Sony Music Greece/RCA Ліцензія див. нижче Обґрунтування добропорядного використання не вказано назву статті [?] Опис Обкладинка синглу Tha 'Mai Allios Джерело http://...

 

For other uses, see Islam and slavery (disambiguation). Harem Scene with Mothers and Daughters in Varying Costumes from Qajar Iran, late 19th or early 20th century[1] The Aurut Bazaar, or Slave Market, c. 1836 Concubinage in the Muslim world was the practice of Muslim men entering into intimate relationships without marriage,[2] with enslaved women,[3] though in rare, exceptional cases, sometimes with free women.[4][5][6] If the ...

Всесвітній курултай (конгрес) башкирів (башк. Бөтә донъя башҡорттары ҡоролтайы (конгресы)) — міжнародний союз громадських організацій, покликаний вирішувати завдання об'єднання, етнокультурного розвитку та оновлення башкирів. Штаб-квартира розташована в Башкортостан

 

  提示:此条目的主题不是1948年中華民國立法委員選舉。 國民大會第一屆國民大會代表選舉 ← 1918 1947年11月21日-1947年11月23日 1969 →   多數黨 少數黨 第三大黨   领袖 蔣中正 曾琦 徐傅霖 政党 國民黨 青年黨 民社黨 代表选区 浙江奉化 四川隆昌 廣東和平 赢得席次 2901 76 68 國民大會第一屆國民大會代表選舉為中華民國的国会议员選舉,全國各地分

 

Vivi Kreutzberger Vivi Kreutzberger en 2018Información personalNombre de nacimiento Vivian Nina Kreutzberger MuchnickNacimiento 28 de agosto de 1965 (58 años)Santiago, ChileNacionalidad ChilenaFamiliaPadres Teresa Muchnick Rosenblum y Mario Kreutzberger BlumenfeldCónyuge Robert Wilkins (2003-actualidad)Hijos Ilan, Amir, Nicole, Yael y SharonEducaciónEducada en Instituto Hebreo Información profesionalOcupación Presentadora de televisiónCanal Canal 13 (1999-2009)Mega (2010-2012)TV+ ...

Pour les articles homonymes, voir IRSN. Institut de radioprotection et de sûreté nucléaireLogo de l'Institut de radioprotection et de sûreté nucléaire.HistoireFondation 2001CadreType Agence française de sécurité sanitaireForme juridique Établissement public national à caractère industriel ou commercial doté d'un comptable publicDomaine d'activité Radioprotection, Sûreté nucléaireSiège 31 avenue de la Division-Leclerc, Fontenay-aux-RosesPays  FranceOrganisationEffectif 1...

 

Scottish Canals(Scottish Gaelic: Canàlan na h-Alba)Scottish Canals logoPredecessorBritish WaterwaysFormation2 July 2012 (2012-07-02)Typeexecutive non-departmental public body of the Scottish GovernmentHeadquartersGlasgow, Scotland, UKRegion served ScotlandChairman of BoardMaureen Campbell[1]Chief ExecutiveCatherine Topley[1]Budget £19.2m[2]Staff 284[2]Websitewww.scottishcanals.co.ukFormerly calledBritish Waterways (Scotland) Scottish Canals (Sc...

 

Transit of Venus beralih ke halaman ini. Untuk kegunaan lain, lihat Transit of Venus (disambiguasi). 171 ångströms (17.1 nm)Spektrum tampak kontinu.Foto ultraviolet dan spektrum kontinu pada transit Venus 2012, diambil dari Solar Dynamics Observatory milik NASA. Transit Venus melintasi Matahari terjadi ketika planet Venus melintas di antara Matahari dan Bumi (atau planet lain), membuatnya terlihat di atas keping surya. Dalam sebuah transit, Venus dapat terlihat dari Bumi sebagai titik hitam...

German fairy tale The Water of LifeArthur Rackham, 1916Folk taleNameThe Water of LifeAarne–Thompson groupingATU 551CountryGermanyPublished inGrimms' Fairy TalesRelated The Brown Bear of the Green Glen The King of England and his Three Sons The Water of Life (German: Das Wasser des Lebens) is a German fairy tale collected by the Brothers Grimm, tale number 97.[1] It is Aarne-Thompson type 551.[2] John Francis Campbell noted it as a parallel of the Scottish fairy tale, The Bro...

 

Midpeninsula Regional Open Space District This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (January 2023) (Learn how and when to remove this template message) One of the many trails at Los Trancos Openspace Preserve Los Trancos Open Space Preserve is a 274-acre (1.11 km2) open space preserve, located in San Mateo and S...

 

Japanese anime television series Rampo Kitan: Game of LaplaceKey visual for the anime featuring the main protagonists, Akechi (top left), Kobayashi (right), and Hashiba (bottom left).乱歩奇譚 Game of LaplaceGenreMystery,[1] psychological[2]Created byEdogawa Ranpo Anime television seriesDirected bySeiji KishiWritten byMakoto UezuMusic byMasaru YokoyamaStudioLercheLicensed byAUS: Madman EntertainmentNA: FunimationOriginal networkFuji TV (Noitamina)En...

American politician John JanasMember of the Massachusetts House of Representatives for the 15th Middlesex districtIn office1963–1969Preceded byCornelius DesmondMayor of Lowell, MassachusettsIn office1954–1955Preceded byHenry BeaudrySucceeded bySamuel S. Pollard Personal detailsBornSeptember 4, 1910Lowell, MassachusettsDiedDecember 5, 1969 (aged 59)Lowell, MassachusettsPolitical partyRepublicanAlma materLowell Technological InstituteOccupationReal estate and insurance broker[1] Joh...

 

Belimbing sayur Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Oxalidales Famili: Oxalidaceae Genus: Averrhoa Spesies: Averrhoa bilimbi. L Buah Belimbing Wuluh Belimbing sayur (dikenal pula dengan nama belimbing wuluh, belimbing buluh, belimbing botol, belimbing besi, atau belimbing asam) (Averrhoa Bilimbi Linn) merupakan sejenis pohon kecil yang diperkirakan berasal dari Kepulauan Maluku, dan dikembangbiakkan serta tumbuh bebas di Indonesia, Filipi...

 

Cet article est une ébauche concernant un économiste et un sociologue allemand. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Oppenheimer. Franz OppenheimerFranz Oppenheimer sur un timbre de la Deutsche Bundespost.BiographieNaissance 30 mars 1864BerlinDécès 30 septembre 1943 (à 79 ans)Los Angeles (États-Unis)Sépulture Südfriedhof (d)Nationalité allemandeFormation ...

石川県小松市團十郎芸術劇場うらら 外観 情報通称 團十郎芸術劇場うらら[1][2][3]正式名称 石川県小松市團十郎芸術劇場うらら[4][5][6][7]旧名称 石川県こまつ芸術劇場うらら[1][5][6][8]開館 2004年3月14日開館公演 松竹大歌舞伎[9]客席数 851席(大ホール)250席(小ホール)延床面積 7791,35m²設備 ホール...

 

Amsal 12Kitab Amsal lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab AmsalKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen20← pasal 11 pasal 13 → Amsal 12 (disingkat Ams 12) adalah bagian dari Kitab Amsal dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen.[1][2] Teks Naskah sumber utama: Masoretik, Septuaginta dan Naskah Laut Mati. Pasal ini terdiri dari 28 ayat. Berisi amsal-amsal raja Salomo bin Daud.[3] St...

 

Radio station in Calgary CKRY-FMCalgary, AlbertaBroadcast areaCalgary Metropolitan RegionFrequency105.1 MHz (FM) (HD Radio)BrandingCountry 105ProgrammingFormatCountryHD2: CHQRAffiliationsPremiere NetworksOwnershipOwnerCorus Entertainment(Corus Radio Company)Sister stationsCHQR, CFGQ-FM, CICT-DT, CISA-DTHistoryFirst air dateJuly 9, 1982Call sign meaningC(K)algaRY (broadcast area) orC(K)ountRY (format)Technical informationClassCERP100,000 wattsHAAT298.5 meters (979 ft)Transmitter coordinat...

1937 single by The Raymond Scott QuintettePowerhouseBrunswick 78 rpm issue of Raymond Scott's PowerhouseSingle by The Raymond Scott QuintetteB-sideThe Toy TrumpetReleased1937RecordedFebruary 20, 1937Genre Novelty Length2:56LabelMaster RecordsBrunswickColumbiaSongwriter(s)Raymond Scott Powerhouse (1937) is an instrumental musical composition by Raymond Scott, perhaps best known today as the assembly line music in animated cartoons released by Warner Bros. History In scripted comments read on t...

 

It has been suggested that this article be merged into Siberia. (Discuss) Proposed since November 2023. See also: Siberia and European Russia Subregion of the Asian continent North AsiaArea13,100,000 km2 (5,100,000 sq mi)Population37 million (2021 census)Population density2.6 per km2 (7.4 per mi2)GDP (nominal)$480 billion (2021)[1]GDP per capita$13,000 (2021)Ethnic groupsMajority SlavicMinority Tungusic, Mongolic and Turkic peoplesReligionsMajority Orthodox ChristianDem...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!