Tusi couple

An animated model of a Tusi couple

The Tusi couple (also known as Tusi's mechanism[1][2][3]) is a mathematical device in which a small circle rotates inside a larger circle twice the diameter of the smaller circle. Rotations of the circles cause a point on the circumference of the smaller circle to oscillate back and forth in linear motion along a diameter of the larger circle. The Tusi couple is a 2-cusped hypocycloid.

The couple was first proposed by the 13th-century Persian astronomer and mathematician Nasir al-Din al-Tusi in his 1247 Tahrir al-Majisti (Commentary on the Almagest) as a solution for the latitudinal motion of the inferior planets[4] and later used extensively as a substitute for the equant introduced over a thousand years earlier in Ptolemy's Almagest.[5][6]

Original description

Tusi's diagram of the Tusi couple, 13th century[7]
Tusi's two mutual inversions of the couple. Note that, contrary to the description, the circles in the lower animation must rotate in the same direction.

The translation of the copy of Tusi's original description of his geometrical model alludes to at least one inversion of the model to be seen in the diagrams:

If two coplanar circles, the diameter of one of which is equal to half the diameter of the other, are taken to be internally tangent at a point, and if a point is taken on the smaller circle—and let it be at the point of tangency—and if the two circles move with simple motions in opposite direction in such a way that the motion of the smaller [circle] is twice that of the larger so the smaller completes two rotations for each rotation of the larger, then that point will be seen to move on the diameter of the larger circle that initially passes through the point of tangency, oscillating between the endpoints.[8]

The description is not coherent and appears to arbitrarily combine features of several both possible and impossible inversions of the geometric model.

Algebraically, the model can be expressed with complex numbers as

Other commentators have observed that the Tusi couple can be interpreted as a rolling curve where the rotation of the inner circle satisfies a no-slip condition as its tangent point moves along the fixed outer circle.

Other sources

Copernicus' perception of the Tusi couple. "The two circles move ... in opposite direction."

The term "Tusi couple" is a modern one, coined by Edward Stewart Kennedy in 1966.[9] It is one of several late Islamic astronomical devices bearing a striking similarity to models in Nicolaus Copernicus's De revolutionibus, including his Mercury model and his theory of trepidation. Historians suspect that Copernicus or another European author had access to an Arabic astronomical text, but an exact chain of transmission has not yet been identified,[10] The 16th century scientist and traveler Guillaume Postel has been suggested as one possible facilitator.[11][12]

Since the Tusi-couple was used by Copernicus in his reformulation of mathematical astronomy, there is a growing consensus that he became aware of this idea in some way. It has been suggested[13][14] that the idea of the Tusi couple may have arrived in Europe leaving few manuscript traces, since it could have occurred without the translation of any Arabic text into Latin. One possible route of transmission may have been through Byzantine science; Gregory Chioniades translated some of al-Tusi's works from Arabic into Byzantine Greek. Several Byzantine Greek manuscripts containing the Tusi-couple are still extant in Italy.[15] Another possibility is that he encountered the manuscript of the "Straightening of the Curves" (Sefer Meyasher 'Aqov) while studying in Italy.[16]

There are other sources for this mathematical model for converting circular motions to reciprocating linear motion. It is found in Proclus's Commentary on the First Book of Euclid[17] and the concept was known in Paris by the middle of the 14th Century. In his questiones on the Sphere (written before 1362), Nicole Oresme described how to combine circular motions to produce a reciprocating linear motion of a planet along the radius of its epicycle. Oresme's description is unclear and it is not certain whether this represents an independent invention or an attempt to come to grips with a poorly understood Arabic text.[18]

Later examples

Although the Tusi couple was developed within an astronomical context, later mathematicians and engineers developed similar versions of what came to be called hypocycloid straight-line mechanisms. The mathematician Gerolamo Cardano designed a system known as Cardan's movement (also known as a Cardan gear).[19] Nineteenth-century engineers James White,[20] Matthew Murray,[21] as well as later designers, developed practical applications of the hypocycloid straight-line mechanism.

Goodman modification of the Tusi couple, using 3 spur gears

A practical and mechanically simple version of the Tusi couple, which avoids the use of an external rim gear, was developed in 2021 by John Goodman in order to provide linear motion.[22][failed verification][dubiousdiscuss] It uses 3 standard spur gears. A rotating (blue) arm is mounted on a central shaft, to which a fixed (yellow) gear is mounted. A (red) idler gear on the arm meshes with the fixed gear. A third (green) gear meshes with the idler. The third gear has half the number of teeth of the fixed gear. An (orange) arm is fixed to the third gear. If the length of the arm equals the distance between the fixed and outer gears = d, the arm will describe a straight line of throw = 2d. An advantage of this design is that, if standard modulus gears that do not provide the required throw, the idler gear does not have to be colinear with the other two gears

Hypotrochoid

The ellipses (green, cyan, red) are hypotrochoids of the Tusi couple.

A property of the Tusi couple is that points on the inner circle that are not on the circumference trace ellipses. These ellipses, and the straight line traced by the classic Tusi couple, are special cases of hypotrochoids.[23]

See also

Notes

  1. ^ Roshdi Rashed (ed.). Encyclopedia Of The History Of Arabic Science.
  2. ^ Saliba, George (2002-07-01). "Greek astronomy and the medieval Arabic tradition: the medieval Islamic astronomers were not merely translators. They may also have played a key role in the Copernican revolution". American Scientist. 90 (4): 360–368. doi:10.1511/2002.27.360.
  3. ^ Nosonovsky, Michael (2018-08-14). "Abner of Burgos: The Missing Link between Nasir al-Din al-Tusi and Nicolaus Copernicus?". Zutot. 15 (1): 25–30. doi:10.1163/18750214-12151070. ISSN 1571-7283. S2CID 135358186.
  4. ^ George Saliba (1995), "A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam", pp. 152–155.
  5. ^ "Late Medieval Planetary Theory", E. S. Kennedy, Isis 57, #3 (Autumn 1966), 365–378, JSTOR 228366.
  6. ^ Craig G. Fraser, "The cosmos: a historical perspective", Greenwood Publishing Group, 2006 p. 39.
  7. ^ Vatican Library, Vat. ar. 319 fol. 28 verso math19 NS.15 Archived 2014-12-24 at the Wayback Machine, fourteenth-century copy of a manuscript from Tusi
  8. ^ Translated in F. J. Ragep, Memoir on Astronomy II.11 [2], pp. 194, 196.
  9. ^ E. S. Kennedy, "Late Medieval Planetary Theory," p. 370.
  10. ^ E. S. Kennedy, "Late Medieval Planetary Theory," p. 377.
  11. ^ Saliba, George (1996), "Writing the History of Arabic Astronomy: Problems and Differing Perspectives", Journal of the American Oriental Society, 116 (4): 709–18, doi:10.2307/605441, JSTOR 605441, pp. 716-17.
  12. ^ Whose Science is Arabic Science in Renaissance Europe? by George Saliba, Columbia University
  13. ^ Claudia Kren, "The Rolling Device," p. 497.
  14. ^ George Saliba, "Whose Science is Arabic Science in Renaissance Europe?" [1]
  15. ^ George Saliba (April 27, 2006). "Islamic Science and the Making of Renaissance Europe". Library of Congress. Retrieved 2008-03-01.
  16. ^ Ruth Glasner and Avinoam Baraness, "Alfonso's Rectifying the Curved: A Fourteenth-Century Hebrew Geometrical-Philosophical Treatise." Sources and Studies in the History of Mathematics and Physical Sciences Berlin/New York: Springer, 2021.
  17. ^ Veselovsky, I. N. (1973). "Copernicus and Nasir al-Din al-Tusi". Journal for the History of Astronomy. 4 (2): 128–30. Bibcode:1973JHA.....4..128V. doi:10.1177/002182867300400205. S2CID 118453340.
  18. ^ Claudia Kren, "The Rolling Device," pp. 490-2.
  19. ^ Veselovsky, I. N. (1973). "Copernicus and Nasir al-Din al-Tusi". Journal for the History of Astronomy. 4 (2): 128–130. Bibcode:1973JHA.....4..128V. doi:10.1177/002182867300400205. S2CID 118453340.
  20. ^ "Appleton's dictionary of machines, mechanics, engine work, and engineering". 1857.
  21. ^ "Polly Model Engineering: Stationary Engine Kits - Anthony Mount Models". Archived from the original on 2019-03-27. Retrieved 2016-12-30.
  22. ^ "The Equation of Time - Introduction". equation-of-time.info. Retrieved 2022-09-04.
  23. ^ Brande, W.T. (1875), A Dictionary of Science, Literature, & Art, Longmans, Green, and Company, p. 181, retrieved 2017-04-10

References

  • Di Bono, Mario (1995). "Copernicus, Amico, Fracastoro and Tusi's Device: Observations on the Use and Transmission of a Model". Journal for the History of Astronomy. 26 (2): 133–154. Bibcode:1995JHA....26..133D. doi:10.1177/002182869502600203. S2CID 118330488.
  • Kennedy, E. S. (1966). "Late Medieval Planetary Theory". Isis. 57 (3): 365–378. doi:10.1086/350144. S2CID 143569912.
  • Kren, Claudia (1971). "The Rolling Device of Naṣir al-Dīn al-Ṭūsī in the De spera of Nicole Oresme". Isis. 62 (4): 490–498. doi:10.1086/350791. S2CID 144526697.
  • Ragep, F. J. "The Two Versions of the Tusi Couple," in From Deferent to Equant: A Volume of Studies in the History of Science in Ancient and Medieval Near East in Honor of E. S. Kennedy, ed. David King and George Saliba, Annals of the New York Academy of Sciences, 500. New York Academy of Sciences, 1987. ISBN 0-89766-396-9 (pbk.)
  • Ragep, F. J. Nasir al-Din al-Tusi's "Memoir on Astronomy," Sources in the History of Mathematics and Physical Sciences,12. 2 vols. Berlin/New York: Springer, 1993. ISBN 3-540-94051-0 / ISBN 0-387-94051-0.

Read other articles:

صاحب السمو الملكي  الأمير يوهان فريزو Johan Friso Bernhard Christiaan David, Prins van Oranje-Nassau الأمير يوهان فريزو بعام 2008 معلومات شخصية اسم الولادة (بالهولندية: Johan Friso Bernhard Christiaan David)‏[1][2]  الميلاد 25 سبتمبر 1968(1968-09-25)اوتريخت، هولندا الوفاة 12 أغسطس 2013 (44 سنة)لاهاي، هولندا سبب الوفاة سقو

 

Артем Далакян Загальна інформаціяПовне ім'я Артем Камоєвич ДалакянГромадянство  УкраїнаНародився 10 серпня 1987(1987-08-10) (36 років)Баку, АзербайджанПроживання ДніпроВагова категорія Найлегша вага(до 50,8 кг)Стійка ортодоксЗріст 164 смПрофесіональна кар'єраБоїв 22Перемог 22Пе...

 

Мозес Гомберг Народився 8 лютого 1866(1866-02-08)[1][2]Єлисаветград, Херсонська губернія, Російська імперіяПомер 12 лютого 1947(1947-02-12)[1][2] (81 рік)Енн-Арбор, Мічиган, СШАКраїна  СШАДіяльність хімікГалузь хіміяAlma mater Університет Мічигану (1894)[3]Науковий керівник Al...

(NFL) memilih pemain sepak bola perguruan tinggi yang memenuhi syarat. Ini berfungsi sebagai sumber rekrutmen pemain paling terkenal di liga. Rancangan dasar drafnya adalah masing-masing tim diberi posisi dalam penyusunan tatanan dalam urutan terbalik relatif terhadap catatannya pada tahun sebelumnya, yang berarti tim tempat terakhir diposisikan terlebih dahulu. Dari posisi ini, tim dapat memilih pemain atau memperdagangkan posisinya ke tim lain untuk posisi draft lainnya, pemain atau pemain,...

 

Sau cuộc bạo loạn tại Điện Capitol Hoa Kỳ 2021, các cuộc điều tra tội phạm, lo ngại về sức khỏe cộng đồng và các tác động chính trị khác nhau đã xảy ra, đáng chú ý nhất là vụ luận tội Donald Trump lần thứ hai. Cuộc nổi loạn đã gây ra một cuộc truy lùng thủ phạm trên toàn quốc bởi cơ quan thực thi pháp luật liên bang, với các vụ bắt giữ và truy tố theo sau trong vài ngày. Vụ việc...

 

Cet article est une ébauche concernant un livre. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Les Récits de l'enseigne StålCouverture de l'édition de 1886Titre original (sv) Fänrik Ståls sägnerLangue SuédoisAuteur Johan Ludvig RunebergGenre PoésieSujet Guerre de FinlandePersonnage Johan August SandelsDates de parution 18481860Pays Finlandemodifier - modifier le code - modifier Wikidata Les Récit...

Constituency of the Andhra Pradesh Legislative Assembly, India SatyaveduConstituency for the Andhra Pradesh Legislative AssemblyLocation of Satyavedu Assembly constituency within Andhra PradeshConstituency detailsCountryIndiaRegionSouth IndiaStateAndhra PradeshDistrictTirupatiLS constituencyTirupatiEstablished1962Total electors202,771ReservationNoneMember of Legislative Assembly15th Andhra Pradesh Legislative AssemblyIncumbent Koneti Adimulam PartyYSR Congress PartyElected year2019 Satyavedu ...

 

Fort, used as a leisure centre, in Jersey, Channel Islands Fort RegentSaint Helier, Jersey Fort Regent in 2008.Fort Regent in the 19th century.Fort RegentCoordinates49°10′53″N 2°06′21″W / 49.1813°N 2.1059°W / 49.1813; -2.1059TypeFortificationSite informationOwnerPeople of JerseyControlled byStates of JerseyOpen tothe publicYesConditionIntactSite historyBuilt1806 to 1814MaterialsGraniteCarboniferous limestoneGarrison informationGarrisonBritish...

 

1996 studio album by Pat Metheny GroupQuartetStudio album by Pat Metheny GroupReleasedNovember 1996RecordedMay 1996StudioRight Track Studio, New York CityGenreJazz, jazz fusionLength66:01LabelGeffenProducerPat MethenyPat Metheny chronology We Live Here(1995) Quartet(1996) Beyond the Missouri Sky (Short Stories)(1997) Professional ratingsReview scoresSourceRatingAllmusic[1]The Penguin Guide to Jazz Recordings[2] Quartet (1996) is the eighth studio album by the Pat Methe...

River in India MuthaNew Yerawada Bridge over the Mula-Mutha RiverLocationCountryIndiaStateMaharashtraRegionDeccan PlateauDistrictPuneCityPunePhysical characteristicsSource  • locationPune City, confluence of Mula & Mutha, Pune, Sangamwadi, Pune city • coordinates18°34′23″N 73°49′54″E / 18.57306°N 73.83167°E / 18.57306; 73.83167 MouthBhima River • locationPune District, Maharashtra, India ...

 

National Park located in Yukon, Canada Ivvavik National ParkParc national Ivvavik (French)IUCN category II (national park)Sheep Slot Rapids on the Firth RiverLocation of Ivvavik National Park in CanadaLocationYukon, CanadaNearest cityInuvikCoordinates69°31′11″N 139°31′30″W / 69.51972°N 139.52500°W / 69.51972; -139.52500Area10,168 km2 (3,926 sq mi)Established1984Governing bodyParks Canada Ivvavik National Park (/ˈiːvəvɪk/ EE-və-...

 

SukalarangKecamatanSukalarangPeta lokasi Kecamatan SukalarangTampilkan peta Kabupaten SukabumiSukalarangSukalarang (Jawa Barat)Tampilkan peta Jawa BaratSukalarangSukalarang (Jawa)Tampilkan peta JawaSukalarangSukalarang (Indonesia)Tampilkan peta IndonesiaKoordinat: 6°52′41″S 107°01′12″E / 6.878011°S 107.020115°E / -6.878011; 107.020115Koordinat: 6°52′41″S 107°01′12″E / 6.878011°S 107.020115°E / -6.878011; 107.020115Negara&...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري اليوناني 1963–64 تفاصيل الموسم الدوري اليوناني لكرة القدم  النسخة 5،  و28  البلد اليونان  ا...

 

Mexicanaисп. Mexicana de Aviación ИАТАMX ИКАОMXA ПозывнойMEXICANA Дата основания 1921 Прекращение деятельности 2010 Хабы Мехико, Гвадалахара и Канкун Альянс Star Alliance (2000—2009)Oneworld (2009—2010) Слоган Fly in the highest Размер флота 66 Пунктов назначения 48 Штаб-квартира Мехико, Мексика Руководство Ман...

 

American labor lawyer and politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Joseph Arthur Padway – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this template message) Joseph Arthur Padway (July 25, 1891 – October 9, 1947) was an American labor lawy...

Play by Samuel Beckett Waiting for GodotEn attendant Godot, staging by Otomar Krejca, Avignon Festival, 1978Written bySamuel BeckettCharactersVladimirEstragonPozzoLucky A BoyMuteGodotDate premiered5 January 1953; 70 years ago (1953-01-05)Place premieredThéâtre de Babylone [fr], ParisOriginal languageFrenchGenreTragicomedy (play) Waiting for Godot (/ˈɡɒdoʊ/ GOD-oh)[1] is a play by Irish playwright Samuel Beckett in which two characters, Vladimir (Di...

 

Human settlement in EnglandManningfordManningford BruceManningfordLocation within WiltshirePopulation405 (in 2011)[1]OS grid referenceSU138578Civil parishManningfordUnitary authorityWiltshireCeremonial countyWiltshireRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townPewseyPostcode districtSN9Dialling code01672PoliceWiltshireFireDorset and WiltshireAmbulanceSouth Western UK ParliamentDevizesWebsiteThe Manningfords List of p...

 

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects: Stub sorting This template is maintained by WikiProject Stub sorting, an attempt to bring some sort of order to Wikipedia. If you would like to participate, you can choose to improve/expand the articles containing this stub notice, or visit the project page, where you can join the project and see a list of open tasks.Stub sortingWikipedia:WikiProject Stub sortingTem...

NeythukaranSutradaraPriyanandananDitulis olehN. SasidharanPemeranMurali Vijayaraghavan Sona NairSinematograferJain Joseph, FTIITanggal rilis2002NegaraIndiaBahasaMalayalam Neythukaran adalah sebuah film Malayalam 2002 yang disutradarai oleh debutan Priyanandanan dan dibintangi oleh Murali.[1] Murali memenangkan Penghargaan Film Nasional untuk Aktor Terbaik pada 2002 untuk penampilannya dalam film tersebut. Pemeran Murali ... Appa Mestry Vijayaraghavan M. R. Gopakumar ... Bahuleyan Sona...

 

Guangzhou Metro station South China Normal University华师Chinese nameSimplified Chinese华师站Traditional Chinese華師站TranscriptionsStandard MandarinHanyu PinyinHuáshī ZhànYue: CantoneseYale RomanizationWàhsī JaahmJyutpingWaa4si1 Zaam6 General informationLocationTianhe District, Guangzhou, GuangdongChinaCoordinates23°08′25″N 113°20′43″E / 23.140306°N 113.345349°E / 23.140306; 113.345349Operated byGuangzhou Metro Co. Ltd.Line(s)  ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!